Home > Science & Mathematics > Physics > Classical mechanics > Dynamics of Stochastic Systems
Dynamics of Stochastic Systems

International Edition

Fluctuating parameters appear in a variety of physical systems and phenomena. They typically come either as random forces/sources, or advecting velocities, or media (material) parameters, like refraction index, conductivity, diffusivity, etc. The well known example of Brownian particle suspended in fluid and subjected to random molecular bombardment laid the foundation for modern stochastic calculus and statistical physics. Other important examples include turbulent transport and diffusion of particle-tracers (pollutants), or continuous densities (''oil slicks''), wave propagation and scattering in randomly inhomogeneous media, for instance light or sound propagating in the turbulent atmosphere.

Such models naturally render to statistical description, where the input parameters and solutions are expressed by random processes and fields.

The fundamental problem of stochastic dynamics is to identify the essential characteristics of system (its state and evolution), and relate those to the input parameters of the system and initial data.

This raises a host of challenging mathematical issues. One could rarely solve such systems exactly (or approximately) in a closed analytic form, and their solutions depend in a complicated implicit manner on the initial-boundary data, forcing and system's (media) parameters . In mathematical terms such solution becomes a complicated nonlinear functional of random fields and processes.

Part I gives mathematical formulation for the basic physical models of transport, diffusion, propagation and develops some analytic tools.

Part II sets up and applies the techniques of variational calculus and stochastic analysis, like Fokker-Plank equation to those models, to produce exact or approximate solutions, or in worst case numeric procedures. The exposition is motivated and demonstrated with numerous examples.

Part III takes up issues for the coherent phenomena in stochastic dynamical systems, described by ordinary and partial differential equations, like wave propagation in randomly layered media (localization), turbulent advection of passive tracers (clustering).

Each chapter is appended with problems the reader to solve by himself (herself), which will be a good training for independent investigations.

## Best Seller

Product Details
• ISBN-13: 9780444517968
• Publisher: Elsevier Science
• Publisher Imprint: Elsevier Science
• Depth: 13
• Language: English
• Returnable: N
• Spine Width: 10 mm
• Width: 167 mm
• ISBN-10: 0444517960
• Publisher Date: 01 Apr 2005
• Binding: Paperback
• Height: 241 mm
• No of Pages: 212
• Series Title: English
• Weight: 290 gr

## Similar Products

Write A Review
Write your own book review for Dynamics of Stochastic Systems

Top Reviews
Be the first to write a review on this book Dynamics of Stochastic Systems