Home > Computing and Information Technology > Computer science > Artificial intelligence > Artificial Neural Networks and Machine Learning – ICANN 2019: Workshop and Special Sessions: 28th International Conference on Artificial Neural Networks, Munich, Germany, September 17–19, 2019, Proceedings(11731 Lecture Notes in Computer Science)
37%
Artificial Neural Networks and Machine Learning – ICANN 2019: Workshop and Special Sessions: 28th International Conference on Artificial Neural Networks, Munich, Germany, September 17–19, 2019, Proceedings(11731 Lecture Notes in Computer Science)

Artificial Neural Networks and Machine Learning – ICANN 2019: Workshop and Special Sessions: 28th International Conference on Artificial Neural Networks, Munich, Germany, September 17–19, 2019, Proceedings(11731 Lecture Notes in Computer Science)

          
5
4
3
2
1

Available


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

The proceedings set LNCS 11727, 11728, 11729, 11730, and 11731 constitute the proceedings of the 28th International Conference on Artificial Neural Networks, ICANN 2019, held in Munich, Germany, in September 2019. The total of 277 full papers and 43 short papers presented in these proceedings was carefully reviewed and selected from 494 submissions. They were organized in 5 volumes focusing on theoretical neural computation; deep learning; image processing; text and time series; and workshop and special sessions. 

Table of Contents:
A Reservoir Computing Framework for Continuous Gesture Recognition.- Using conceptors to transfer between long-term and short-term Memory.- Bistable Perception in Conceptor Networks.- Continual Learning exploiting Structure of Fractal Reservoir Computing.- Continuous Blood Pressure Estimation through Optimized Echo State Networks.- Reservoir Topology in Deep Echo State Networks.- Multiple Pattern Generations and Chaotic Itinerant dynamics in Reservoir Computing.- Echo State Network with Adversarial Training.- Hyper-spherical reservoirs for Echo State Networks.- Echo State vs. LSTM Networks for Word Sense Disambiguation.- Echo State Networks for Named Entity Recognition.- Efficient Cross-Validation of Echo State Networks.- Echo State Property of Neuronal Cell Cultures.- Overview on the PHRESCO project:  PHotonic REServoir COmputing.- Classification of Human Actions in Videos with a Large-Scale Photonic Reservoir Computer.- A power-effcient architecture for on-chip reservoir computing.- Time Series Processing with VCSEL-based Reservoir Computer.- Optoelectronic reservoir computing using a mixed digital-analog hardware implementation.- Comparison of Feature Extraction Techniques for Handwritten Digit Recognition with a Photonic Reservoir Computer.- Polarization dynamics of VCSELs improves reservoir computing performance..- Reservoir-size dependent learning in analogue neural networks.- Transferring reservoir computing: formulation and application to  fluid physics.- Investigation of EEG-based Graph-theoretic Analysis for Automatic Diagnosis of Alcohol Use Disorder .- EchoQuan-Net: Direct Quantification of Echo Sequence for Left Ventricle Multidimensional Indices via Global-Local Learning, Geometric Adjustment, and multi-target relation learning.- An attention-based ID-CNNs-CRF model for named entity recognition on clinical electronic medical records.- Deep Text Prior: Weakly Supervised Learning for Assertion Classification.- Inter-region SynchronizationAnalysis based on Heterogeneous Matrix Similarity Measurement.- Bi-ResNet: Fully automated classification of unregistered contralateral mammograms.- Pattern Recognition for COPD Diagnostics Using an Artificial Neural Network and Its Potential Integration on Hardware-based Neuromorphic Platforms.- Quantifying Structural Heterogeneity of Healthy and Cancerous Mitochondria using a Combined Segmentation and Classification USK-Net.- Breast Cancer Classification on Histopathological Images Affected by Data Imbalance Using Active Learning and Deep Convolutional Neural Network.- Measuring the Angle of Hallux Valgus Using Segmentation of Bones on X-ray Images.- Human Body Posture Recognition Using Wearable Devices.- Collaborative Denoising Autoencoder for High Glycated Haemoglobin Prediction.- On Chow-Liu forest based regularization of deep belief networks.- Prototypes within Minimum Enclosing Balls.- Exploring Local Transformation Shared Weights in Convolutional Neural Networks.- The Good, theBad and the Ugly: augmenting a black-box model with expert knowledge.- Hierarchical Attentional Hybrid Neural Networks for Document Classification.- Reinforcement learning informed by optimal control.- Explainable Anomaly Detection via Feature-Based Localization.- Bayesian Automatic Relevance Determination for Feature selection in Credit Default Modelling.- TSXplain: Demystification of DNN Decisions for Time-Series using Natural Language and Statistical Features.- DeepMimic: Mentor-Student Unlabeled Data Based Training.- Evaluation of tag clusterings for user profiling in movie recommendation.- A Sparse Filtering-based Approach for Non-Blind Deep Image Denoising.- Hybrid Attention Driven Text-to-Image Synthesis via Generative Adversarial Networks.- Hypernetwork functional image representation.- Instance-based Segmentation for Boundary Detection of Neuropathic Ulcers through Mask-RCNN.- Capsule Networks for attention under occlusion.- IP-GAN: Learning Identity and Pose Disentanglementin Generative Adversarial Networks.- Hypernetwork Knowledge Graph Embeddings.- Signed Graph Attention Networks.- Graph Classification with 2D Convolutional Neural Networks.- Community Detection via Joint Graph Convolutional Network Embedding in Attribute Network.- Temporal Coding of Neural Stimuli.- Heterogeneous Information Network Embedding with Meta-path-based Graph Attention Networks.- Dual-FOFE-net Neural Models for Entity Linking with PageRank.- Spatial-Temporal Graph Convolutional Networks for Sign Language Recognition.- Graph Convolutional Networks Improve the Prediction of Cancer Driver Genes.- CNN-Based Semantic Change Detection in Satellite Imagery.- Axiomatic Kernels on Graphs for Support Vector Machines.- Multitask Learning on Graph Neural Networks: Learning Multiple Graph Centrality Measures with a Unified Network.- Neural Network Guided Tree-Search Policies for Synthesis Planning .- LSTM and 1-D Convolutional Neural Networks for predictive monitoring of the anaerobic digestion process.- Progressive Docking - a Deep Learning Based Approach for Accelerated Virtual Screening.- Predictive Power of Time-series Based Machine Learning Models for DMPK Measurements in Drug Discovery.- Improving Deep Generative Models with Randomized SMILES.- Attention and Edge Memory Convolution for Bioactivity Prediction.- Application of materials informatics tools to the analysis of combinatorial libraries of all metal-oxides photovoltaic cells.- Analysis and Modelling of False Positives in GPCR Assays.- Characterization of Quantum Derived Electronic Properties of Molecules: A Computational Intelligence Approach.- Using an Autoencoder for Dimensionality Reduction in Quantum Dynamics.- Conformational Oversampling as Data Augmentation for Molecules.- Prediction of the Atomization Energy of Molecules Using Coulomb Matrix and Atomic Composition in a Bayesian Regularized Neural Networks.- Deep Neural Network Architecture for Drug-Target Interaction Prediction.- Mol-CycleGAN - a generative model for molecular optimization.- A TRANSFORMER MODEL FOR RETROSYNTHESIS.- Augmentation is What You Need!.- Diversify Libraries Using Generative Topographic Mapping.- Detection of Frequent-Hitters across various HTS Technologies.- Message Passing Neural Networks scoring functions for structure-based drug discovery.


Best Sellers


Product Details
  • ISBN-13: 9783030304928
  • Publisher: Springer Nature Switzerland AG
  • Publisher Imprint: Springer Nature Switzerland AG
  • Height: 235 mm
  • No of Pages: 852
  • Series Title: 11731 Lecture Notes in Computer Science
  • Spine Width: 44 mm
  • Weight: 322 gr
  • ISBN-10: 3030304922
  • Publisher Date: 11 Sep 2019
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Series Title: Theoretical Computer Science and General Issues
  • Sub Title: 28th International Conference on Artificial Neural Networks, Munich, Germany, September 17–19, 2019, Proceedings
  • Width: 155 mm


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Artificial Neural Networks and Machine Learning – ICANN 2019: Workshop and Special Sessions: 28th International Conference on Artificial Neural Networks, Munich, Germany, September 17–19, 2019, Proceedings(11731 Lecture Notes in Computer Science)
Springer Nature Switzerland AG -
Artificial Neural Networks and Machine Learning – ICANN 2019: Workshop and Special Sessions: 28th International Conference on Artificial Neural Networks, Munich, Germany, September 17–19, 2019, Proceedings(11731 Lecture Notes in Computer Science)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Artificial Neural Networks and Machine Learning – ICANN 2019: Workshop and Special Sessions: 28th International Conference on Artificial Neural Networks, Munich, Germany, September 17–19, 2019, Proceedings(11731 Lecture Notes in Computer Science)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA