Home > Computing and Information Technology > Databases > Data mining > Big Data Analytics for Internet of Things
14%
Big Data Analytics for Internet of Things

Big Data Analytics for Internet of Things

          
5
4
3
2
1

International Edition


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

BIG DATA ANALYTICS FOR INTERNET OF THINGS Discover the latest developments in IoT Big Data with a new resource from established and emerging leaders in the field Big Data Analytics for Internet of Things delivers a comprehensive overview of all aspects of big data analytics in Internet of Things (IoT) systems. The book includes discussions of the enabling technologies of IoT data analytics, types of IoT data analytics, challenges in IoT data analytics, demand for IoT data analytics, computing platforms, analytical tools, privacy, and security. The distinguished editors have included resources that address key techniques in the analysis of IoT data. The book demonstrates how to select the appropriate techniques to unearth valuable insights from IoT data and offers novel designs for IoT systems. With an abiding focus on practical strategies with concrete applications for data analysts and IoT professionals, Big Data Analytics for Internet of Things also offers readers: A thorough introduction to the Internet of Things, including IoT architectures, enabling technologies, and applications An exploration of the intersection between the Internet of Things and Big Data, including IoT as a source of Big Data, the unique characteristics of IoT data, etc. A discussion of the IoT data analytics, including the data analytical requirements of IoT data and the types of IoT analytics, including predictive, descriptive, and prescriptive analytics A treatment of machine learning techniques for IoT data analytics Perfect for professionals, industry practitioners, and researchers engaged in big data analytics related to IoT systems, Big Data Analytics for Internet of Things will also earn a place in the libraries of IoT designers and manufacturers interested in facilitating the efficient implementation of data analytics strategies.

Table of Contents:
List of Contributors xv List of Abbreviations xix 1 Big Data Analytics for the Internet of Things: An Overview 1 Tausifa Jan Saleem and Mohammad Ahsan Chishti 2 Data, Analytics and Interoperability Between Systems (IoT) is Incongruous with the Economics of Technology: Evolution of Porous Pareto Partition (P3) 7 Shoumen Palit Austin Datta, Tausifa Jan Saleem, Molood Barati, María Victoria López López, Marie-Laure Furgala, Diana C. Vanegas, Gérald Santucci, Pramod P. Khargonekar, and Eric S. McLamore 2.1 Context 8 2.2 Models in the Background 12 2.3 Problem Space: Are We Asking the Correct Questions? 14 2.4 Solutions Approach: The Elusive Quest to Build Bridges Between Data and Decisions 15 2.5 Avoid This Space: The Deception Space 17 2.6 Explore the Solution Space: Necessary to Ask Questions That May Not Have Answers, Yet 17 2.7 Solution Economy: Will We Ever Get There? 19 2.8 Is This Faux Naïveté in Its Purest Distillate? 21 2.9 Reality Check: Data Fusion 22 2.10 “Double A” Perspective of Data and Tools vs. The Hypothetical Porous Pareto (80/20) Partition 28 2.11 Conundrums 29 2.12 Stigma of Partition vs. Astigmatism of Vision 38 2.13 The Illusion of Data, Delusion of Big Data, and the Absence of Intelligence in AI 40 2.14 In Service of Society 50 2.15 Data Science in Service of Society: Knowledge and Performance from PEAS 52 2.16 Temporary Conclusion 60 Acknowledgements 63 References 63 3 Machine Learning Techniques for IoT Data Analytics 89 Nailah Afshan and Ranjeet Kumar Rout 3.1 Introduction 89 3.2 Taxonomy of Machine Learning Techniques 94 3.2.1 Supervised ML Algorithm 95 3.2.1.1 Classification 96 3.2.1.2 Regression Analysis 98 3.2.1.3 Classification and Regression Tasks 99 3.2.2 Unsupervised Machine Learning Algorithms 103 3.2.2.1 Clustering 103 3.2.2.2 Feature Extraction 106 3.2.3 Conclusion 107 References 107 4 IoT Data Analytics Using Cloud Computing 115 Anjum Sheikh, Sunil Kumar, and Asha Ambhaikar 4.1 Introduction 115 4.2 IoT Data Analytics 117 4.2.1 Process of IoT Analytics 117 4.2.2 Types of Analytics 118 4.3 Cloud Computing for IoT 118 4.3.1 Deployment Models for Cloud 120 4.3.1.1 Private Cloud 120 4.3.1.2 Public Cloud 120 4.3.1.3 Hybrid Cloud 121 4.3.1.4 Community Cloud 121 4.3.2 Service Models for Cloud Computing 122 4.3.2.1 Software as a Service (SaaS) 122 4.3.2.2 Platform as a Service (PaaS) 122 4.3.2.3 Infrastructure as a Service (IaaS) 122 4.3.3 Data Analytics on Cloud 123 4.4 Cloud-Based IoT Data Analytics Platform 123 4.4.1 Atos Codex 125 4.4.2 AWS IoT 125 4.4.3 IBM Watson IoT 126 4.4.4 Hitachi Vantara Pentaho, Lumada 127 4.4.5 Microsoft Azure IoT 128 4.4.6 Oracle IoT Cloud Services 129 4.5 Machine Learning for IoT Analytics in Cloud 132 4.5.1 ML Algorithms for Data Analytics 132 4.5.2 Types of Predictions Supported by ML and Cloud 136 4.6 Challenges for Analytics Using Cloud 137 4.7 Conclusion 139 References 139 5 Deep Learning Architectures for IoT Data Analytics 143 Snowber Mushtaq and Omkar Singh 5.1 Introduction 143 5.1.1 Types of Learning Algorithms 146 5.1.1.1 Supervised Learning 146 5.1.1.2 Unsupervised Learning 146 5.1.1.3 Semi-Supervised Learning 146 5.1.1.4 Reinforcement Learning 146 5.1.2 Steps Involved in Solving a Problem 146 5.1.2.1 Basic Terminology 147 5.1.2.2 Training Process 147 5.1.3 Modeling in Data Science 147 5.1.3.1 Generative 148 5.1.3.2 Discriminative 148 5.1.4 Why DL and IoT? 148 5.2 DL Architectures 149 5.2.1 Restricted Boltzmann Machine 149 5.2.1.1 Training Boltzmann Machine 150 5.2.1.2 Applications of RBM 151 5.2.2 Deep Belief Networks (DBN) 151 5.2.2.1 Training DBN 152 5.2.2.2 Applications of DBN 153 5.2.3 Autoencoders 153 5.2.3.1 Training of AE 153 5.2.3.2 Applications of AE 154 5.2.4 Convolutional Neural Networks (CNN) 154 5.2.4.1 Layers of CNN 155 5.2.4.2 Activation Functions Used in CNN 156 5.2.4.3 Applications of CNN 158 5.2.5 Generative Adversarial Network (GANs) 158 5.2.5.1 Training of GANs 158 5.2.5.2 Variants of GANs 159 5.2.5.3 Applications of GANs 159 5.2.6 Recurrent Neural Networks (RNN) 159 5.2.6.1 Training of RNN 160 5.2.6.2 Applications of RNN 161 5.2.7 Long Short-Term Memory (LSTM) 161 5.2.7.1 Training of LSTM 161 5.2.7.2 Applications of LSTM 162 5.3 Conclusion 162 References 163 6 Adding Personal Touches to IoT: A User-Centric IoT Architecture 167 Sarabjeet Kaur Kochhar 6.1 Introduction 167 6.2 Enabling Technologies for BDA of IoT Systems 169 6.3 Personalizing the IoT 171 6.3.1 Personalization for Business 172 6.3.2 Personalization for Marketing 172 6.3.3 Personalization for Product Improvement and Service Optimization 173 6.3.4 Personalization for Automated Recommendations 174 6.3.5 Personalization for Improved User Experience 174 6.4 Related Work 175 6.5 User Sensitized IoT Architecture 176 6.6 The Tweaked Data Layer 178 6.7 The Personalization Layer 180 6.7.1 The Characterization Engine 180 6.7.2 The Sentiment Analyzer 182 6.8 Concerns and Future Directions 183 6.9 Conclusions 184 References 185 7 Smart Cities and the Internet of Things 187 Hemant Garg, Sushil Gupta, and Basant Garg 7.1 Introduction 187 7.2 Development of Smart Cities and the IoT 188 7.3 The Combination of the IoT with Development of City Architecture to Form Smart Cities 189 7.3.1 Unification of the IoT 190 7.3.2 Security of Smart Cities 190 7.3.3 Management of Water and Related Amenities 190 7.3.4 Power Distribution and Management 191 7.3.5 Revenue Collection and Administration 191 7.3.6 Management of City Assets and Human Resources 192 7.3.7 Environmental Pollution Management 192 7.4 How Future Smart Cities Can Improve Their Utilization of the Internet of All Things, with Examples 193 7.5 Conclusion 194 References 195 8 A Roadmap for Application of IoT-Generated Big Data in Environmental Sustainability 197 Ankur Kashyap 8.1 Background and Motivation 197 8.2 Execution of the Study 198 8.2.1 Role of Big Data in Sustainability 198 8.2.2 Present Status and Future Possibilities of IoT in Environmental Sustainability 199 8.3 Proposed Roadmap 202 8.4 Identification and Prioritizing the Barriers in the Process 204 8.4.1 Internet Infrastructure 204 8.4.2 High Hardware and Software Cost 204 8.4.3 Less Qualified Workforce 204 8.5 Conclusion and Discussion 205 References 205 9 Application of High-Performance Computing in Synchrophasor Data Management and Analysis for Power Grids 209 C.M. Thasnimol and R. Rajathy 9.1 Introduction 209 9.2 Applications of Synchrophasor Data 210 9.2.1 Voltage Stability Analysis 211 9.2.2 Transient Stability 212 9.2.3 Out of Step Splitting Protection 213 9.2.4 Multiple Event Detection 213 9.2.5 State Estimation 213 9.2.6 Fault Detection 214 9.2.7 Loss of Main (LOM) Detection 214 9.2.8 Topology Update Detection 214 9.2.9 Oscillation Detection 215 9.3 Utility Big Data Issues Related to PMU-Driven Applications 215 9.3.1 Heterogeneous Measurement Integration 215 9.3.2 Variety and Interoperability 216 9.3.3 Volume and Velocity 216 9.3.4 Data Quality and Security 216 9.3.5 Utilization and Analytics 217 9.3.6 Visualization of Data 218 9.4 Big Data Analytics Platforms for PMU Data Processing 219 9.4.1 Hadoop 220 9.4.2 Apache Spark 221 9.4.3 Apache HBase 222 9.4.4 Apache Storm 222 9.4.5 Cloud-Based Platforms 223 9.5 Conclusions 224 References 224 10 Intelligent Enterprise-Level Big Data Analytics for Modeling and Management in Smart Internet of Roads 231 Amin Fadaeddini, Babak Majidi, and Mohammad Eshghi 10.1 Introduction 231 10.2 Fully Convolutional Deep Neural Network for Autonomous Vehicle Identification 233 10.2.1 Detection of the Bounding Box of the License Plate 233 10.2.2 Segmentation Objective 234 10.2.3 Spatial Invariances 234 10.2.4 Model Framework 234 10.2.4.1 Increasing the Layer of Transformation 234 10.2.4.2 Data Format of Sample Images 235 10.2.4.3 Applying Batch Normalization 236 10.2.4.4 Network Architecture 236 10.2.5 Role of Data 236 10.2.6 Synthesizing Samples 236 10.2.7 Invariances 237 10.2.8 Reducing Number of Features 237 10.2.9 Choosing Number of Classes 238 10.3 Experimental Setup and Results 239 10.3.1 Sparse Softmax Loss 239 10.3.2 Mean Intersection Over Union 240 10.4 Practical Implementation of Enterprise-Level Big Data Analytics for Smart City 240 10.5 Conclusion 244 References 244 11 Predictive Analysis of Intelligent Sensing and Cloud-Based Integrated Water Management System 247 Tanuja Patgar and Ripal Patel 11.1 Introduction 247 11.2 Literature Survey 248 11.3 Proposed Six-Tier Data Framework 250 11.3.1 Primary Components 251 11.3.2 Contact Unit (FC-37) 253 11.3.3 Internet of Things Communicator (ESP8266) 253 11.3.4 GSM-Based ARM and Control System 253 11.3.5 Methodology 253 11.3.6 Proposed Algorithm 256 11.4 Implementation and Result Analysis 257 11.4.1 Water Report for Home 1 and Home 2 Modules 263 11.5 Conclusion 263 References 263 12 Data Security in the Internet of Things: Challenges and Opportunities 265 Shashwati Banerjea, Shashank Srivastava, and Sachin Kumar 12.1 Introduction 265 12.2 IoT: Brief Introduction 266 12.2.1 Challenges in a Secure IoT 267 12.2.2 Security Requirements in IoT Architecture 268 12.2.2.1 Sensing Layer 268 12.2.2.2 Network Layer 269 12.2.2.3 Interface Layer 271 12.2.3 Common Attacks in IoT 271 12.3 IoT Security Classification 272 12.3.1 Application Domain 272 12.3.1.1 Authentication 272 12.3.1.2 Authorization 274 12.3.1.3 Depletion of Resources 274 12.3.1.4 Establishment of Trust 275 12.3.2 Architectural Domain 275 12.3.2.1 Authentication in IoT Architecture 275 12.3.2.2 Authorization in IoT Architecture 276 12.3.3 Communication Channel 276 12.4 Security in IoT Data 277 12.4.1 IoT Data Security: Requirements 277 12.4.1.1 Data: Confidentiality, Integrity, and Authentication 278 12.4.1.2 Data Privacy 279 12.4.2 IoT Data Security: Research Directions 280 12.5 Conclusion 280 References 281 13 DDoS Attacks: Tools, Mitigation Approaches, and Probable Impact on Private Cloud Environment 285 R. K. Deka, D. K. Bhattacharyya, and J. K. Kalita 13.1 Introduction 285 13.1.1 State of the Art 287 13.1.2 Contribution 288 13.1.3 Organization 290 13.2 Cloud and DDoS Attack 290 13.2.1 Cloud Deployment Models 290 13.2.1.1 Differences Between Private Cloud and Public Cloud 293 13.2.2 DDoS Attacks 294 13.2.2.1 Attacks on Infrastructure Level 294 13.2.2.2 Attacks on Application Level 296 13.2.3 DoS/DDoS Attack on Cloud: Probable Impact 297 13.3 Mitigation Approaches 298 13.3.1 Discussion 309 13.4 Challenges and Issues with Recommendations 309 13.5 A Generic Framework 310 13.6 Conclusion and Future Work 312 References 312 14 Securing the Defense Data for Making Better Decisions Using Data Fusion 321 Syed Rameem Zahra 14.1 Introduction 321 14.2 Analysis of Big Data 322 14.2.1 Existing IoT Big Data Analytics Systems 322 14.2.2 Big Data Analytical Methods 324 14.2.3 Challenges in IoT Big Data Analytics 324 14.3 Data Fusion 325 14.3.1 Opportunities Provided by Data Fusion 326 14.3.2 Data Fusion Challenges 326 14.3.3 Stages at Which Data Fusion Can Happen 326 14.3.4 Mathematical Methods for Data Fusion 326 14.4 Data Fusion for IoT Security 327 14.4.1 Defense Use Case 329 14.5 Conclusion 329 References 330 15 New Age Journalism and Big Data (Understanding Big Data and Its Influence on Journalism) 333 Asif Khan and Heeba Din 15.1 Introduction 333 15.1.1 Big Data Journalism: The Next Big Thing 334 15.1.2 All About Data 336 15.1.3 Accessing Data for Journalism 337 15.1.4 Data Analytics: Tools for Journalists 338 15.1.5 Case Studies – Big Data 340 15.1.5.1 BBC Big Data 340 15.1.5.2 The Guardian Data Blog 342 15.1.5.3 Wikileaks 344 15.1.5.4 World Economic Forum 344 15.1.6 Big Data – Indian Scenario 345 15.1.7 Internet of Things and Journalism 346 15.1.8 Impact on Media/Journalism 347 References 348 16 Two Decades of Big Data in Finance: Systematic Literature Review and Future Research Agenda 351 Nufazil Altaf 16.1 Introduction 351 16.2 Methodology 353 16.3 Article Identification and Selection 353 16.4 Description and Classification of Literature 354 16.4.1 Research Method Employed 354 16.4.2 Articles Published Year Wise 355 16.4.3 Journal of Publication 356 16.5 Content and Citation Analysis of Articles 356 16.5.1 Citation Analysis 356 16.5.2 Content Analysis 357 16.5.2.1 Big Data in Financial Markets 358 16.5.2.2 Big Data in Internet Finance 359 16.5.2.3 Big Data in Financial Services 359 16.5.2.4 Big Data and Other Financial Issues 360 16.6 Reporting of Findings and Research Gaps 360 16.6.1 Findings from the Literature Review 361 16.6.1.1 Lack of Symmetry 361 16.6.1.2 Dominance of Research on Financial Markets, Internet Finance, and Financial Services 361 16.6.1.3 Dominance of Empirical Research 361 16.6.2 Directions for Future Research 362 References 362 Index 367


Best Sellers


Product Details
  • ISBN-13: 9781119740759
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: John Wiley & Sons Inc
  • Height: 226 mm
  • No of Pages: 400
  • Spine Width: 20 mm
  • Width: 155 mm
  • ISBN-10: 1119740754
  • Publisher Date: 24 Jun 2021
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Weight: 748 gr


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Big Data Analytics for Internet of Things
John Wiley & Sons Inc -
Big Data Analytics for Internet of Things
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Big Data Analytics for Internet of Things

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA