16%
Circuit Theory of Linear Noisy Networks

Circuit Theory of Linear Noisy Networks

          
5
4
3
2
1

Out of Stock


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Notify me when this book is in stock
Add to Wishlist

About the Book

Excerpt from the Preface The principal motivation for this work arose from the obvious desirability of finding a single quantity, a tag so to speak, to describe the noise performance of a two-terminal-pair amplifier. The possibility of the existence of such a quantity and even the general functional form which it might be expected to take were suggested by previous work of one of the authors on microwave tubes and their noise performance. This work showed that noise parameters of the electron beam set an ultimate limit to the entire noise performance of the amplifier that employed the beam. In the microwave tube case, however, the findings were based heavily upon the physical nature of the electron beam, and it was not immediately clear that a general theory of noise performance for any linear amplifier could be made without referring again to some detailed physical mechanism. In order to detach the study of noise performance from specific physical mechanisms, one had to have recourse to general circuit theory of active networks. Such a theory had grown up around the problems associated with transistor amplifiers, and important parts of it were available to us through the association of one of us with Professor S. J. Mason. This combination of circumstances led to the collaboration of the authors.Two major guiding principles, or clues, could be drawn from the experience on microwave tubes. One such clue was the general form of the probable appropriate noise parameter. The other was the recognition that matrix algebra and a proper eigenvalue formulation would be required in order to achieve a general theory without becoming hopelessly involved in algebraic detail.Essentially by trial and error, guided by some power-gain theorems in active circuit theory, we first found a few invariants of noisy networks. Afterward, while we were trying to decide around which quantities we should build a matrix-eigenvalue formulation leading to these same invariants, we were aided by the fact that Mr. D. L. Bobroff recognized a connection between the invariants which we had found and the problem of the available power of a multiterminal-pair network. Armed with this additional idea, we consulted extensively with Professor L. N. Howard of MIT's Department of Mathematics, in search of the appropriate matrix-eigenvalue problem. As a result of his suggestions, we were able to reach substantially the final form of the desired formulation.Once the proper eigenvalue approach was found, additional results and interpretations followed rapidly. In particular, the idea that the eigenvalue formulation should be associated with a canonical form of the noisy network was suggested in a conversation with Proessor Shannon.One of the principal results of the work is that it furnishes a single number, or tag, which may be said to characterize the amplifier noise performance on the basis of the signal-to-noise-ratio criterion. The novel features of this tag are two in number: First, it clears up questions of the noise performance of low-gain amplifiers or of the effect upon noise performance of degenerative feedback; second, it provides for the first time a systematic treatment of the noise performance of negative-resistance amplifiers. The latter results were not expected in the original motivation for the study but grew from insistent demands upon the internal consistency of the theory. It is interesting that the negative-resistance case will probably turn out to be one of the most important practical results of our work. Another result worth mentioning here, however, is the canonical form of linear noisy networks. This form summarizes in a clear, almost visual, manner the connection between the internal noise of a network at any particular frequency and its (resistive, positive, or negative) part.


Best Sellers



Product Details
  • ISBN-13: 9780262582322
  • Publisher: Mit Press
  • Publisher Imprint: Mit Press
  • Depth: 6
  • Language: English
  • Returnable: N
  • Spine Width: 25 mm
  • Width: 152 mm
  • ISBN-10: 0262582325
  • Publisher Date: 05 Nov 2018
  • Binding: Paperback
  • Height: 229 mm
  • No of Pages: 79
  • Series Title: Circuit Theory of Linear Noisy Networks
  • Weight: 240 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Circuit Theory of Linear Noisy Networks
Mit Press -
Circuit Theory of Linear Noisy Networks
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Circuit Theory of Linear Noisy Networks

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!