Home > Science, Technology & Agriculture > Technology: general issues > Maths for engineers > Computational Intelligence in Expensive Optimization Problems: (2 Adaptation, Learning, and Optimization)
9%
Computational Intelligence in Expensive Optimization Problems: (2 Adaptation, Learning, and Optimization)

Computational Intelligence in Expensive Optimization Problems: (2 Adaptation, Learning, and Optimization)

          
5
4
3
2
1

International Edition


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

In modern science and engineering, laboratory experiments are replaced by high fidelity and computationally expensive simulations. Using such simulations reduces costs and shortens development times but introduces new challenges to design optimization process. Examples of such challenges include limited computational resource for simulation runs, complicated response surface of the simulation inputs-outputs, and etc. Under such difficulties, classical optimization and analysis methods may perform poorly. This motivates the application of computational intelligence methods such as evolutionary algorithms, neural networks and fuzzy logic, which often perform well in such settings. This is the first book to introduce the emerging field of computational intelligence in expensive optimization problems. Topics covered include: dedicated implementations of evolutionary algorithms, neural networks and fuzzy logic. reduction of expensive evaluations (modelling, variable-fidelity, fitness inheritance), frameworks for optimization (model management, complexity control, model selection), parallelization of algorithms (implementation issues on clusters, grids, parallel machines), incorporation of expert systems and human-system interface, single and multiobjective algorithms, data mining and statistical analysis, analysis of real-world cases (such as multidisciplinary design optimization). The edited book provides both theoretical treatments and real-world insights gained by experience, all contributed by leading researchers in the respective fields. As such, it is a comprehensive reference for researchers, practitioners, and advanced-level students interested in both the theory and practice of using computational intelligence for expensive optimization problems.

Table of Contents:
Techniques for Resource-Intensive Problems.- A Survey of Fitness Approximation Methods Applied in Evolutionary Algorithms.- A Review of Techniques for Handling Expensive Functions in Evolutionary Multi-Objective Optimization.- Multilevel Optimization Algorithms Based on Metamodel- and Fitness Inheritance-Assisted Evolutionary Algorithms.- Knowledge-Based Variable-Fidelity Optimization of Expensive Objective Functions through Space Mapping.- Reducing Function Evaluations Using Adaptively Controlled Differential Evolution with Rough Approximation Model.- Kriging Is Well-Suited to Parallelize Optimization.- Analysis of Approximation-Based Memetic Algorithms for Engineering Optimization.- Opportunities for Expensive Optimization with Estimation of Distribution Algorithms.- On Similarity-Based Surrogate Models for Expensive Single- and Multi-objective Evolutionary Optimization.- Multi-objective Model Predictive Control Using Computational Intelligence.- Improving Local Convergence in Particle Swarms by Fitness Approximation Using Regression.- Techniques for High-Dimensional Problems.- Differential Evolution with Scale Factor Local Search for Large Scale Problems.- Large-Scale Network Optimization with Evolutionary Hybrid Algorithms: Ten Years’ Experience with the Electric Power Distribution Industry.- A Parallel Hybrid Implementation Using Genetic Algorithms, GRASP and Reinforcement Learning for the Salesman Traveling Problem.- An Evolutionary Approach for the TSP and the TSP with Backhauls.- Towards Efficient Multi-objective Genetic Takagi-Sugeno Fuzzy Systems for High Dimensional Problems.- Evolutionary Algorithms for the Multi Criterion Minimum Spanning Tree Problem.- Loss-Based Estimation with Evolutionary Algorithms and Cross-Validation.- Real-World Applications.-Particle Swarm Optimisation Aided MIMO Transceiver Designs.- Optimal Design of a Common Rail Diesel Engine Piston.- Robust Preliminary Space Mission Design under Uncertainty.- Progressive Design Methodology for Design of Engineering Systems.- Reliable Network Design Using Hybrid Genetic Algorithm Based on Multi-Ring Encoding.- Isolated Word Analysis Using Biologically-Based Neural Networks.- A Distributed Evolutionary Approach to Subtraction Radiography.- Speeding-Up Expensive Evaluations in High-Level Synthesis Using Solution Modeling and Fitness Inheritance.


Best Sellers


Product Details
  • ISBN-13: 9783642107009
  • Publisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
  • Publisher Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Edition: 2010 ed.
  • Language: English
  • Returnable: N
  • Series Title: 2 Adaptation, Learning, and Optimization
  • Weight: 1359 gr
  • ISBN-10: 3642107001
  • Publisher Date: 22 Apr 2010
  • Binding: Hardback
  • Height: 235 mm
  • No of Pages: 800
  • Returnable: Y
  • Spine Width: 41 mm
  • Width: 155 mm


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Computational Intelligence in Expensive Optimization Problems: (2 Adaptation, Learning, and Optimization)
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG -
Computational Intelligence in Expensive Optimization Problems: (2 Adaptation, Learning, and Optimization)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Computational Intelligence in Expensive Optimization Problems: (2 Adaptation, Learning, and Optimization)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA