Home > Mathematics and Science Textbooks > Mathematics > Computational Statistics in Data Science
43%
Computational Statistics in Data Science

Computational Statistics in Data Science

          
5
4
3
2
1

International Edition


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

An essential roadmap to the application of computational statistics in contemporary data science In Computational Statistics in Data Science, a team of distinguished mathematicians and statisticians delivers an expert compilation of concepts, theories, techniques, and practices in computational statistics for readers who seek a single, standalone sourcebook on statistics in contemporary data science. The book contains multiple sections devoted to key, specific areas in computational statistics, offering modern and accessible presentations of up-to-date techniques. Computational Statistics in Data Science provides complimentary access to finalized entries in the Wiley StatsRef: Statistics Reference Online compendium. Readers will also find: A thorough introduction to computational statistics relevant and accessible to practitioners and researchers in a variety of data-intensive areas Comprehensive explorations of active topics in statistics, including big data, data stream processing, quantitative visualization, and deep learning Perfect for researchers and scholars working in any field requiring intermediate and advanced computational statistics techniques, Computational Statistics in Data Science will also earn a place in the libraries of scholars researching and developing computational data-scientific technologies and statistical graphics.

Table of Contents:
List of Contributors xxiii Preface xxix Part I Computational Statistics and Data Science 1 1 Computational Statistics and Data Science in the Twenty-first Century 3 Andrew J. Holbrook, Akihiko Nishimura, Xiang Ji, and Marc A. Suchard 1 Introduction 3 2 Core Challenges 1–3 5 3 Model-Specific Advances 8 4 Core Challenges 4 and 5 12 5 Rise of Data Science 16   2 Statistical Software 23 Alfred G. Schissler and Alexander D. Knudson 1 User Development Environments 23 2 Popular Statistical Software 26 3 Noteworthy Statistical Software and Related Tools 30 4 Promising and Emerging Statistical Software 36 5 The Future of Statistical Computing 38 6 Concluding Remarks 39 3 An Introduction to Deep Learning Methods 43 Yao Li, Justin Wang and Thomas C.M. Lee 1 Introduction 43 2 Machine Learning: An Overview 43 3 Feedforward Neural Networks 45 4 Convolutional Neural Networks 48 5 Autoencoders 52 6 Recurrent Neural Networks 54 7 Conclusion 57   4 Streaming Data and Data Streams 59 Taiwo Kolajo, Olawande Daramola, and Ayodele Adebiyi 1 Introduction 59 2 Data Stream Computing 61 3 Issues in Data Stream Mining 61 4 Streaming Data Tools and Technologies 64 5 Streaming Data Pre-Processing: Concept and Implementation 65 6 Streaming Data Algorithms 65 7 Strategies for Processing Data Streams 68 8 Best Practices for Managing Data Streams 69 9 Conclusion and theWay Forward 70 Part II Simulation-Based Methods 79 5 Monte Carlo Simulation: Are We There Yet? 81 Dootika Vats, James M. Flegal, and Galin L. Jones 1 Introduction 81 2 Estimation 83 3 Sampling Distribution 84 4 Estimating Σ 87 5 Stopping Rules 88 6 Workflow 89 7 Examples 90   6 Sequential Monte Carlo: Particle Filters and Beyond 99 Adam M. Johansen 1 Introduction 99 2 Sequential Importance Sampling and Resampling 99 3 SMC in Statistical Contexts 106 4 Selected Recent Developments 112 7 Markov Chain Monte Carlo Methods, A Survey with Some Frequent Misunderstandings 119 Christian P. Robert and Wu Changye 1 Introduction 119 2 Monte Carlo Methods 121 3 Markov Chain Monte Carlo Methods 128 4 Approximate Bayesian Computation 141 5 Further Reading 145 8 Bayesian Inference with Adaptive Markov Chain Monte Carlo 151 Matti Vihola 1 Introduction 151 2 Random-Walk Metropolis Algorithm 151 3 Adaptation of Random-Walk Metropolis 152 4 Multimodal Targets with Parallel Tempering 156 5 Dynamic Models with Particle Filters 157 6 Discussion 159 9 Advances in Importance Sampling 165 Víctor Elvira and Luca Martino 1 Introduction and Problem Statement 165 2 Importance Sampling 167 3 Multiple Importance Sampling (MIS) 171 4 Adaptive Importance Sampling (AIS) 174 Part III Statistical Learning 183   10 Supervised Learning 185 Weibin Mo and Yufeng Liu 1 Introduction 185 2 Penalized Empirical Risk Minimization 186 3 Linear Regression 190 4 Classification 193 5 Extensions for Complex Data 200 6 Discussion 203 11 Unsupervised and Semisupervised Learning 209 Jia Li and Vincent A. Pisztora 1 Introduction 209 2 Unsupervised Learning 210 3 Semisupervised Learning 219 4 Conclusions 224 12 Random Forest 231 Peter Calhoun, Xiaogang Su, Kelly M. Spoon, Richard A. Levine, and Juanjuan Fan 1 Introduction 231 2 Random Forest (RF) 232 3 Random Forest Extensions 235 4 Random Forests of Interaction Trees (RFIT) 239 5 Random Forest of Interaction Trees for Observational Studies 243 6 Discussion 249 13 Network Analysis 253 Rong Ma and Hongzhe Li 1 Introduction 253 2 Gaussian Graphical Models for Mixed Partial Compositional Data 255 3 Theoretical Properties 257 4 Graphical Model Selection 260 5 Analysis of a Microbiome–Metabolomics Data 260 6 Discussion 261 14 Tensors in Modern Statistical Learning 269 Will Wei Sun, Botao Hao, and Lexin Li 1 Introduction 269 2 Background270 3 Tensor Supervised Learning 272 4 Tensor Unsupervised Learning 276 5 Tensor Reinforcement Learning 282 6 Tensor Deep Learning 286 15 Computational Approaches to Bayesian Additive Regression Trees 297 Hugh Chipman, Edward George, Richard Hahn, Robert McCulloch, Matthew Pratola, and Rodney Sparapani 1 Introduction 297 2 Bayesian CART 298 3 TreeMCMC302 4 The BART Model 308 5 BART Example: Boston Housing Values and Air Pollution 310 6 BARTMCMC311 7 BART Extentions 313 8 Conclusion 320  Part IV High-Dimensional Data Analysis 323 16 Penalized Regression 325 Seung Jun Shin and Yichao Wu 1 Introduction 325 2 Penalization for Smoothness 326 3 Penalization for Sparsity 328 4 Tuning Parameter Selection 330 17 Model Selection in High-Dimensional Regression 333 Hao H. Zhang 1 Model Selection Problem 333 2 Model Selection in High-Dimensional Linear Regression 335 3 Interaction-Effect Selection for High-Dimensional Data 339 4 Model Selection in High-Dimensional Nonparametric Models 342 5 Concluding Remarks 349 18 Sampling Local Scale Parameters in High-Dimensional Regression Models 355 Anirban Bhattacharya and James E. Johndrow 1 Introduction 355 2 A Blocked Gibbs Sampler for the Horseshoe 356 3 Sampling (𝜉, 𝜎2, 𝛽) 359 4 Sampling 𝜂 360 5 Appendix: A. Newton–Raphson Steps for the Inverse-cdf Sampler for 𝜂 367 19 Factor Modeling for High-Dimensional Time Series 371 Chun Yip Yau 1 Introduction 371 2 Identifiability 372 3 Estimation of High-Dimensional Factor Model 373 4 Determining the Number of Factors 383   Part V Quantitative Visualization 387   20 Visual Communication of Data: It Is Not a Programming Problem, It Is Viewer Perception 389 Edward Mulrow and Nola du Toit 1 Introduction 389 2 Case Studies Part 1 391 3 Let StAR Be Your Guide 393 4 Case Studies Part 2: Using StAR Principles to Develop Better Graphics 394 5 Ask Colleagues Their Opinion 397 6 Case Studies: Part 3 398 7 Iterate 401 8 Final Thoughts 402 21 Uncertainty Visualization 405 Lace Padilla, Matthew Kay, and Jessica Hullman 1 Introduction 405 2 Uncertainty Visualization Theories 408  3 General Discussion 420 22 Big Data Visualization 427 Leland Wilkinson 1 Introduction 427 2 Architecture for Big Data Analytics 428 3 Filtering430 4 Aggregating 430 5 Analyzing 436  6 Big Data Graphics 436 7 Conclusion 440 23 Visualization-Assisted Statistical Learning 443 Catherine B. Hurley and Katarina Domijan 1 Introduction 443 2 Better Visualizations with Seriation 444 3 Visualizing Machine Learning Fits 445 4 Condvis2 Case Studies 447 5 Discussion 453 24 Functional Data Visualization 457 Marc G. Genton and Ying Sun 1 Introduction 457 2 Univariate Functional Data Visualization 458 3 Multivariate Functional Data Visualization 461 4 Conclusions 465 Part VI Numerical Approximation and Optimization 469 25 Gradient-Based Optimizers for Statistics and Machine Learning 471 Cho-Jui Hsieh 1 Introduction 471 2 Convex Versus Nonconvex Optimization 472 3 Gradient Descent 473 4 Proximal Gradient Descent: Handling Nondifferentiable Regularization 475 5 Stochastic Gradient Descent 476 26 Alternating Minimization Algorithms 481 David R. Hunter 1 Introduction 481 2 Coordinate Descent 482 3 EM as Alternating Minimization 484 3.1 Finite Mixture Models 485 4 Matrix Approximation Algorithms 486 5 Conclusion 489 27 A Gentle Introduction to Alternating Direction Method of Multipliers (ADMM) for Statistical Problems 493   Shiqian Ma and Mingyi Hong 1 Introduction 493 2 Two Perfect Examples of ADMM 494 3 Variable Splitting and Linearized ADMM 496 4 Multiblock ADMM 499 5 Nonconvex Problems 501 6 Stopping Criteria 502 7 Convergence Results of ADMM 502 28 Nonconvex Optimization via MM Algorithms: Convergence Theory 509 Kenneth Lange, Joong-Ho Won, Alfonso Landeros, and Hua Zhou 1 Background509 2 Convergence Theorems 510 3 Paracontraction 521 4 Bregman Majorization 523 Part VII High-Performance Computing 535 29 Massive Parallelization 537 Robert B. Gramacy 1 Introduction 537 2 Gaussian Process Regression and Surrogate Modeling 539 3 Divide-and-Conquer GP Regression 542 4 Empirical Results 548 5 Conclusion 552 30 Divide-and-Conquer Methods for Big Data Analysis 559 Xueying Chen, Jerry Q. Cheng, and Min-ge Xie 1 Introduction 559 2 Linear Regression Model 560 3 Parametric Models 561 4 Nonparametric and Semiparametric Models 567 5 Online Sequential Updating 568 6 Splitting the Number of Covariates 569 7 Bayesian Divide-and-Conquer and Median-Based Combining 570 8 Real-World Applications 571 9 Discussion 572 31 Bayesian Aggregation 577 Yuling Yao 1 From Model Selection to Model Combination 577 2 From Bayesian Model Averaging to Bayesian Stacking 580 3 Asymptotic Theories of Stacking 584 4 Stacking in Practice 586 5 Discussion 588 32 Asynchronous Parallel Computing 593 Ming Yan 1 Introduction 593 2 Asynchronous Parallel Coordinate Update 597 3 Asynchronous Parallel Stochastic Approaches 602 4 Doubly Stochastic Coordinate Optimization with Variance Reduction 604 5 Concluding Remarks 605


Best Sellers


Product Details
  • ISBN-13: 9781119561071
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: John Wiley & Sons Inc
  • Height: 246 mm
  • No of Pages: 672
  • Spine Width: 28 mm
  • Width: 178 mm
  • ISBN-10: 1119561078
  • Publisher Date: 21 Apr 2022
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Weight: 975 gr


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Computational Statistics in Data Science
John Wiley & Sons Inc -
Computational Statistics in Data Science
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Computational Statistics in Data Science

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA