close menu
Bookswagon-24x7 online bookstore
close menu
My Account
Home > Science, Technology & Agriculture > Technology: general issues > Computer Simulation Studies of Self-Assembly of Dipolar and Quadrupolar Colloid Particles.: (English)
Computer Simulation Studies of Self-Assembly of Dipolar and Quadrupolar Colloid Particles.: (English)

Computer Simulation Studies of Self-Assembly of Dipolar and Quadrupolar Colloid Particles.: (English)

          
5
4
3
2
1

Out of Stock


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Notify me when this book is in stock
Add to Wishlist

About the Book

Colloidal particles with directional interactions that self-assemble into pre-defined structures have the potential to serve as the foundation for a new generation of micro- and nano-structures of remarkable complexity and precision. Dipolar colloid particles tend to align end-to-end and self-assemble into variety of micro- and nano-structures ranging from co-crystals of novel symmetry, to open networks (gels) of cross-linked chains of particles. Quadrupolar colloid particles also tend to self-assemble in a wide variety of structural motifs including sheets, tubes and shells depending upon external conditions. We use molecular dynamics computer simulation to explore the self-assembly, structure, crystallization and/or gelation of systems of colloid particles with permanent dipole moments or quadrupole moments immersed in a high-dielectric solvent. Particle-particle interactions are modeled with discontinuous potentials in order to take advantage of discontinuous molecular dynamics (DMD), a fast simulation technique that is very computationally efficient. We first calculate the phase diagram in the temperature-packing fraction plane of a monodisperse system of dipolar colloid particles using DMD. Several types of phases are found in our simulations: ordered phases including face centered cubic (FCC), hexagonal close packed (HCP) and body centered tetragonal (BCT) at high packing fractions, and fluid, string-fluid and gel phases at low packing fractions. The very low volume fraction gel phases and the well ordered crystal phases are promising for advanced materials applications. We then extend our analysis to a binary mixture of dipolar colloid particles. Phase diagrams for an equimolar binary mixture of dipolar colloid particles with different diameter ratios and different dipole moment ratios are calculated in the temperature-volume fraction plane. These systems exhibit six distinct phases: isotropic fluid, string-fluid, gel, FCC, HCP, BCT, and ten coexisting phases: Fluida + String-fluidb, Fluida + Gelb, String-fluida + Gelb, Gela + BCTb, FCCa + FCCb, FCCa + HCP b, FCCa + FCCb+ Fluid, HCPa + HCP b, BCTa + BCTb, BCTa + BCTb + large voids, depending upon size ratio and dipole moment ratio. An interesting aspect of these phase diagrams is the appearance of co-crystals containing large and small dipolar colloid particles. Even more interesting is the appearance of two unique bicontinuous gel structures - the first gel consists of two independent but interpenetrating networks of cross-linked chains formed by particles with high dipole moment and chains formed by particles with low dipole moment. The second type of gel consists of a network of cross-linked chains formed by particles with high dipole moment; particles with low dipole moment form a sheath around the chains. Such bicontinuous gels may have unusual rheological and transport properties such as multiple yield stresses and multiple percolation temperatures and could form the basis of a new class of soft-solid materials with unique properties and multiple applications. We also explore the structure formation of systems of colloid particles with permanent quadrupole moment. We introduce a simple quadrupole-quadrupole discontinuous potential model that gives rise to the self-organization of surface and tubular structures. We find that the discrete rotational symmetry of a quadrupolar particles gives rise to extended two-dimensional sheet or surface structures that preserve the local symmetry within the organized structure. A new type of anisotropic colloid particle is introduced having a displaced quadrupole moment with a unique symmetry; systems comprised of these particles...


Best Seller

| | See All


Product Details
  • ISBN-13: 9781244018648
  • Publisher: Proquest, Umi Dissertation Publishing
  • Publisher Imprint: Proquest, Umi Dissertation Publishing
  • Height: 254 mm
  • No of Pages: 162
  • Series Title: English
  • Weight: 336 gr
  • ISBN-10: 1244018643
  • Publisher Date: 01 Sep 2011
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Spine Width: 11 mm
  • Width: 203 mm


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Computer Simulation Studies of Self-Assembly of Dipolar and Quadrupolar Colloid Particles.: (English)
Proquest, Umi Dissertation Publishing -
Computer Simulation Studies of Self-Assembly of Dipolar and Quadrupolar Colloid Particles.: (English)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Computer Simulation Studies of Self-Assembly of Dipolar and Quadrupolar Colloid Particles.: (English)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    | | See All


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA