Home > Mathematics and Science Textbooks > Mathematics > Algebra > A Concrete Introduction to Higher Algebra: (Undergraduate Texts in Mathematics)
59%
A Concrete Introduction to Higher Algebra: (Undergraduate Texts in Mathematics)

A Concrete Introduction to Higher Algebra: (Undergraduate Texts in Mathematics)

          
5
4
3
2
1

Available


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

This book is written as an introduction to higher algebra for students with a background of a year of calculus. The first edition of this book emerged from a set of notes written in the 1970sfor a sophomore-junior level course at the University at Albany entitled "Classical Algebra." The objective of the course, and the book, is to give students enough experience in the algebraic theory of the integers and polynomials to appre­ ciate the basic concepts of abstract algebra. The main theoretical thread is to develop algebraic properties of the ring of integers: unique factorization into primes, congruences and congruence classes, Fermat's theorem, the Chinese remainder theorem; and then again for the ring of polynomials. Doing so leads to the study of simple field extensions, and, in particular, to an exposition of finite fields. Elementary properties of rings, fields, groups, and homomorphisms of these objects are introduced and used as needed in the development. Concurrently with the theoretical development, the book presents a broad variety of applications, to cryptography, error-correcting codes, Latin squares, tournaments, techniques of integration, and especially to elemen­ tary and computational number theory. A student who asks, "Why am I learning this?," willfind answers usually within a chapter or two. For a first course in algebra, the book offers a couple of advantages. • By building the algebra out of numbers and polynomials, the book takes maximal advantage of the student's prior experience in algebra and arithmetic. New concepts arise in a familiar context.

Table of Contents:
1 Numbers.- 2 Induction.- A. Induction.- B. Another Form of Induction.- C. Well-Ordering.- D. Division Theorem.- E. Bases.- F. Operations in Base a.- 3 Euclid’s Algorithm.- A. Greatest Common Divisors.- B. Euclid’s Algorithm.- C. Bezout’s Identity.- D. The Efficiency of Euclid’s Algorithm.- E. Euclid’s Algorithm and Incommensurability.- 4 Unique Factorization.- A. The Fundamental Theorem of Arithmetic.- B. Exponential Notation.- C. Primes.- D. Primes in an Interval.- 5 Congruences.- A. Congruence Modulo m.- B. Basic Properties.- C. Divisibility Tricks.- D. More Properties of Congruence.- E. Linear Congruences and Bezout’s Identity.- 6 Congruence Classes.- A. Congruence Classes (mod m): Examples.- B. Congruence Classes and ?/m?.- C. Arithmetic Modulo m.- D. Complete Sets of Representatives.- E. Units.- 7 Applications of Congruences.- A. Round Robin Tournaments.- B. Pseudorandom Numbers.- C. Factoring Large Numbers by Trial Division.- D. Sieves.- E. Factoring by the Pollard Rho Method.- F. Knapsack Cryptosystems.- 8 Rings and Fields.- A. Axioms.- B. ?/m?.- C. Homomorphisms.- 9 Fermat’s and Euler’s Theorems.- A. Orders of Elements.- B. Fermat’s Theorem.- C. Euler’s Theorem.- D. Finding High Powers Modulo m.- E. Groups of Units and Euler’s Theorem.- F. The Exponent of an Abelian Group.- 10 Applications of Fermat’s and Euler’s Theorems.- A. Fractions in Base a.- B. RSA Codes.- C. 2-Pseudoprimes.- D. Trial a-Pseudoprime Testing.- E. The Pollard p — 1 Algorithm.- 11 On Groups.- A. Subgroups.- B. Lagrange’s Theorem.- C. A Probabilistic Primality Test.- D. Homomorphisms.- E. Some Nonabelian Groups.- 12 The Chinese Remainder Theorem.- A. The Theorem.- B. Products of Rings and Euler’s ?-Function.- C. Square Roots of 1 Modulo m.- 13 Matricesand Codes.- A. Matrix Multiplication.- B. Linear Equations.- C. Determinants and Inverses.- D. Mn(R).- E. Error-Correcting Codes, I.- F. Hill Codes.- 14 Polynomials.- 15 Unique Factorization.- A. Division Theorem.- B. Primitive Roots.- C. Greatest Common Divisors.- D. Factorization into Irreducible Polynomials.- 16 The Fundamental Theorem of Algebra.- A. Rational Functions.- B. Partial Fractions.- C Irreducible Polynomials over ?.- D. The Complex Numbers.- E. Root Formulas.- F. The Fundamental Theorem.- G. Integrating.- 17 Derivatives.- A. The Derivative of a Polynomial.- B. Sturm’s Algorithm.- 18 Factoring in ?[x], I.- A. Gauss’s Lemma.- B. Finding Roots.- C. Testing for Irreducibility.- 19 The Binomial Theorem in Characteristic p.- A. The Binomial Theorem.- B. Fermat’s Theorem Revisited.- C. Multiple Roots.- 20 Congruences and the Chinese Remainder Theorem.- A. Congruences Modulo a Polynomial.- B. The Chinese Remainder Theorem.- 21 Applications of the Chinese Remainder Theorem.- A. The Method of Lagrange Interpolation.- B. Fast Polynomial Multiplication.- 22 Factoring in Fp[x] and in ?[x].- A. Berlekamp’s Algorithm.- B. Factoring in ?[x] by Factoring mod M.- C. Bounding the Coefficients of Factors of a Polynomial.- D. Factoring Modulo High Powers of Primes.- 23 Primitive Roots.- A. Primitive Roots Modulo m.- B. Polynomials Which Factor Modulo Every Prime.- 24 Cyclic Groups and Primitive Roots.- A. Cyclic Groups.- B. Primitive Roots Modulo pe.- 25 Pseudoprimes.- A. Lots of Carmichael Numbers.- B. Strong a-Pseudoprimes.- C. Rabin’s Theorem.- 26 Roots of Unity in ?/m?.- A. For Which a Is m an a-Pseudoprime?.- B. Square Roots of ?1 in ?/p?.- C. Roots of ?1 in ?/m?.- D. False Witnesses.- E. Proof of Rabin’s Theorem.- F. RSA Codes andCarmichael Numbers.- 27 Quadratic Residues.- A. Reduction to the Odd Prime Case.- B. The Legendre Symbol.- C. Proof of Quadratic Reciprocity.- D. Applications of Quadratic Reciprocity.- 28 Congruence Classes Modulo a Polynomial.- A. The Ring F[x]/m(x).- B. Representing Congruence Classes mod m(x).- C. Orders of Elements.- D. Inventing Roots of Polynomials.- E. Finding Polynomials with Given Roots.- 29 Some Applications of Finite Fields.- A. Latin Squares.- B. Error Correcting Codes.- C. Reed-Solomon Codes.- 30 Classifying Finite Fields.- A. More Homomorphisms.- B. On Berlekamp’s Algorithm.- C. Finite Fields Are Simple.- D. Factoring xpn — x in Fp[x].- E. Counting Irreducible Polynomials.- F. Finite Fields.- G. Most Polynomials in Z[x] Are Irreducible.- Hints to Selected Exercises.- References.


Best Sellers


Product Details
  • ISBN-13: 9780387989990
  • Publisher: Springer-Verlag New York Inc.
  • Publisher Imprint: Springer-Verlag New York Inc.
  • Depth: 25
  • Height: 235 mm
  • No of Pages: 522
  • Series Title: Undergraduate Texts in Mathematics
  • Weight: 888 gr
  • ISBN-10: 0387989994
  • Publisher Date: 14 Jan 2000
  • Binding: Paperback
  • Edition: Revised edition
  • Language: English
  • Returnable: N
  • Spine Width: 37 mm
  • Width: 155 mm


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
A Concrete Introduction to Higher Algebra: (Undergraduate Texts in Mathematics)
Springer-Verlag New York Inc. -
A Concrete Introduction to Higher Algebra: (Undergraduate Texts in Mathematics)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

A Concrete Introduction to Higher Algebra: (Undergraduate Texts in Mathematics)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA