Home > Computing and Information Technology > Databases > Data mining > Data Science with Semantic Technologies: Theory, Practice and Application(Advances in Intelligent and Scientific Computing)
14%
Data Science with Semantic Technologies: Theory, Practice and Application(Advances in Intelligent and Scientific Computing)

Data Science with Semantic Technologies: Theory, Practice and Application(Advances in Intelligent and Scientific Computing)

          
5
4
3
2
1

International Edition


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

DATA SCIENCE WITH SEMANTIC TECHNOLOGIES This book will serve as an important guide toward applications of data science with semantic technologies for the upcoming generation and thus becomes a unique resource for scholars, researchers, professionals, and practitioners in this field. To create intelligence in data science, it becomes necessary to utilize semantic technologies which allow machine-readable representation of data. This intelligence uniquely identifies and connects data with common business terms, and it also enables users to communicate with data. Instead of structuring the data, semantic technologies help users to understand the meaning of the data by using the concepts of semantics, ontology, OWL, linked data, and knowledge-graphs. These technologies help organizations to understand all the stored data, adding the value in it, and enabling insights that were not available before. As data is the most important asset for any organization, it is essential to apply semantic technologies in data science to fulfill the need of any organization. Data Science with Semantic Technologies provides a roadmap for the deployment of semantic technologies in the field of data science. Moreover, it highlights how data science enables the user to create intelligence through these technologies by exploring the opportunities and eradicating the challenges in the current and future time frame. In addition, this book provides answers to various questions like: Can semantic technologies be able to facilitate data science? Which type of data science problems can be tackled by semantic technologies? How can data scientists benefit from these technologies? What is knowledge data science? How does knowledge data science relate to other domains? What is the role of semantic technologies in data science? What is the current progress and future of data science with semantic technologies? Which types of problems require the immediate attention of researchers? Audience Researchers in the fields of data science, semantic technologies, artificial intelligence, big data, and other related domains, as well as industry professionals, software engineers/scientists, and project managers who are developing the software for data science. Students across the globe will get the basic and advanced knowledge on the current state and potential future of data science.

Table of Contents:
Preface xv 1 A Brief Introduction and Importance of Data Science 1 Karthika N., Sheela J. and Janet B. 1.1 What is Data Science? What Does a Data Scientist Do? 2 1.2 Why Data Science is in Demand? 2 1.3 History of Data Science 4 1.4 How Does Data Science Differ from Business Intelligence? 9 1.5 Data Science Life Cycle 11 1.6 Data Science Components 13 1.7 Why Data Science is Important 14 1.8 Current Challenges 15 1.8.1 Coordination, Collaboration, and Communication 16 1.8.2 Building Data Analytics Teams 16 1.8.3 Stakeholders vs Analytics 17 1.8.4 Driving with Data 17 1.9 Tools Used for Data Science 19 1.10 Benefits and Applications of Data Science 28 1.11 Conclusion 28 References 29 2 Exploration of Tools for Data Science 31 Qasem Abu Al-Haija 2.1 Introduction 32 2.2 Top Ten Tools for Data Science 35 2.3 Python for Data Science 35 2.3.1 Python Datatypes 36 2.3.2 Helpful Rules for Python Programming 37 2.3.3 Jupyter Notebook for IPython 37 2.3.4 Your First Python Program 38 2.4 R Language for Data Science 39 2.4.1 R Datatypes 39 2.4.2 Your First R Program 41 2.5 SQL for Data Science 44 2.6 Microsoft Excel for Data Science 48 2.6.1 Detection of Outliers in Data Sets Using Microsoft Excel 48 2.6.2 Regression Analysis in Excel Using Microsoft Excel 50 2.7 D3.JS for Data Science 57 2.8 Other Important Tools for Data Science 58 2.8.1 Apache Spark Ecosystem 58 2.8.2 MongoDB Data Store System 60 2.8.3 MATLAB Computing System 62 2.8.4 Neo4j for Graphical Database 63 2.8.5 VMWare Platform for Virtualization 65 2.9 Conclusion 66 References 68 3 Data Modeling as Emerging Problems of Data Science 71 Mahyuddin K. M. Nasution and Marischa Elveny 3.1 Introduction 72 3.2 Data 72 3.2.1 Unstructured Data 74 3.2.2 Semistructured Data 74 3.2.3 Structured Data 76 3.2.4 Hybrid (Un/Semi)-Structured Data 77 3.2.5 Big Data 78 3.3 Data Model Design 79 3.4 Data Modeling 81 3.4.1 Records-Based Data Model 81 3.4.2 Non–Record-Based Data Model 84 3.5 Polyglot Persistence Environment 87 References 88 4 Data Management as Emerging Problems of Data Science 91 Mahyuddin K. M. Nasution and Rahmad Syah 4.1 Introduction 92 4.2 Perspective and Context 92 4.2.1 Life Cycle 93 4.2.2 Use 95 4.3 Data Distribution 98 4.4 CAP Theorem 100 4.5 Polyglot Persistence 101 References 102 5 Role of Data Science in Healthcare 105 Anidha Arulanandham, A. Suresh and Senthil Kumar R. 5.1 Predictive Modeling—Disease Diagnosis and Prognosis 106 5.1.1 Supervised Machine Learning Models 107 5.1.2 Clustering Models 110 5.1.2.1 Centroid-Based Clustering Models 110 5.1.2.2 Expectation Maximization (EM) Algorithm 110 5.1.2.3 DBSCAN 111 5.1.3 Feature Engineering 111 5.2 Preventive Medicine—Genetics/Molecular Sequencing 111 5.2.1 Technologies for Sequencing 113 5.2.2 Sequence Data Analysis with BioPython 114 5.2.2.1 Sequence Data Formats 114 5.2.2.2 BioPython 117 5.3 Personalized Medicine 121 5.4 Signature Biomarkers Discovery from High Throughput Data 122 5.4.1 Methodology I — Novel Feature Selection Method with Improved Mutual Information and Fisher Score 123 5.4.1.1 Algorithm for the Novel Feature Selection Method with Improved Mutual Information and Fisher Score 124 5.4.1.2 Computing F-Score Values for the Features 125 5.4.1.3 Block Diagram for the Method-1 125 5.4.1.4 Data Set 126 5.4.1.5 Identification of Biomarkers Using the Feature Selection Technique-I 127 5.4.2 Feature Selection Methodology-II — Entropy Based Mean Score with mRMR 128 5.4.2.1 Algorithm for the Feature Selection Methodology-II 130 5.4.2.2 Introduction to mRMR Feature Selection 132 5.4.2.3 Data Sets 132 5.4.2.4 Identification of Biomarkers Using Rank Product 133 5.4.2.5 Fold Change Values 133 Conclusion 136 References 136 6 Partitioned Binary Search Trees (P(h)-BST): A Data Structure for Computer RAM 139 Pr. D.E Zegour 6.1 Introduction 140 6.2 P(h)-BST Structure 141 6.2.1 Preliminary Analysis 143 6.2.2 Terminology and Conventions 143 6.3 Maintenance Operations 143 6.3.1 Operations Inside a Class 145 6.3.2 Operations Between Classes (Outside a Class) 148 6.4 Insert and Delete Algorithms 153 6.4.1 Inserting a New Element 153 6.4.2 Deleting an Existing Element 157 6.5 P(h)-BST as a Generator of Balanced Binary Search Trees 160 6.6 Simulation Results 162 6.6.1 Data Structures and Abstract Data Types 164 6.6.2 Analyzing the Insert and Delete Process in Random Case 164 6.6.3 Analyzing the Insert Process in Ascending (Descending) Case 168 6.6.4 Comparing P(2)-BST/P(∞)-BST to Red-Black/AVL Trees 174 6.7 Conclusion 175 Acknowledgments 176 References 176 7 Security Ontologies: An Investigation of Pitfall Rate 179 Archana Patel and Narayan C. Debnath 7.1 Introduction 179 7.2 Secure Data Management in the Semantic Web 184 7.3 Security Ontologies in a Nutshell 187 7.4 InFra_OE Framework 189 7.5 Conclusion 193 References 193 8 IoT-Based Fully-Automated Fire Control System 199 Lalit Mohan Satapathy 8.1 Introduction 200 8.2 Related Works 201 8.3 Proposed Architecture 203 8.4 Major Components 205 8.4.1 Arduino UNO 205 8.4.2 Temperature Sensor 207 8.4.3 LCD Display (16X2) 208 8.4.4 Temperature Humidity Sensor (DHT11) 209 8.4.5 Moisture Sensor 210 8.4.6 CO2 Sensor 211 8.4.7 Nitric Oxide Sensor 212 8.4.8 CO Sensor (MQ-9) 212 8.4.9 Global Positioning System (GPS) 212 8.4.10 GSM Modem 213 8.4.11 Photovoltaic System 214 8.5 Hardware Interfacing 216 8.6 Software Implementation 218 8.7 Conclusion 222 References 223 9 Phrase Level-Based Sentiment Analysis Using Paired Inverted Index and Fuzzy Rule 225 Sheela J., Karthika N. and Janet B. 9.1 Introduction 226 9.2 Literature Survey 228 9.3 Methodology 233 9.3.1 Construction of Inverted Wordpair Index 234 9.3.1.1 Sentiment Analysis Design Framework 235 9.3.1.2 Sentiment Classification 236 9.3.1.3 Preprocessing of Data 237 9.3.1.4 Algorithm to Find the Score 240 9.3.1.5 Fuzzy System 240 9.3.1.6 Lexicon-Based Sentiment Analysis 241 9.3.1.7 Defuzzification 242 9.3.2 Performance Metrics 243 9.4 Conclusion 244 References 244 10 Semantic Technology Pillars: The Story So Far 247 Michael DeBellis, Jans Aasman and Archana Patel 10.1 The Road that Brought Us Here 248 10.2 What is a Semantic Pillar? 249 10.2.1 Machine Learning 249 10.2.2 The Semantic Approach 250 10.3 The Foundation Semantic Pillars: IRI’s, RDF, and RDFS 252 10.3.1 Internationalized Resource Identifier (IRI) 254 10.3.2 Resource Description Framework (RDF) 254 10.3.2.1 Alternative Technologies to RDF: Property Graphs 256 10.3.3 RDF Schema (RDFS) 257 10.4 The Semantic Upper Pillars: OWL, SWRL, SPARQL, and SHACL 259 10.4.1 The Web Ontology Language (OWL) 260 10.4.1.1 Axioms to Define Classes 262 10.4.1.2 The Open World Assumption 263 10.4.1.3 No Unique Names Assumption 263 10.4.1.4 Serialization 264 10.4.2 The Semantic Web Rule Language 264 10.4.2.1 The Limitations of Monotonic Reasoning 267 10.4.2.2 Alternatives to SWRL 267 10.4.3 SPARQL 268 10.4.3.1 The SERVICE Keyword and Linked Data 268 10.4.4 SHACL 271 10.4.4.1 The Fundamentals of SHACL 272 10.5 Conclusion 274 References 274 11 Evaluating Richness of Security Ontologies for Semantic Web 277 Ambrish Kumar Mishra, Narayan C. Debnath and Archana Patel 11.1 Introduction 277 11.2 Ontology Evaluation: State-of-the-Art 280 11.2.1 Domain-Dependent Ontology Evaluation Tools 281 11.2.2 Domain-Independent Ontology Evaluation Tools 282 11.3 Security Ontology 284 11.4 Richness of Security Ontologies 287 11.5 Conclusion 295 References 295 12 Health Data Science and Semantic Technologies 299 Haleh Ayatollahi 12.1 Health Data 300 12.2 Data Science 301 12.3 Health Data Science 301 12.4 Examples of Health Data Science Applications 304 12.5 Health Data Science Challenges 306 12.6 Health Data Science and Semantic Technologies 308 12.6.1 Natural Language Processing (NLP) 309 12.6.2 Clinical Data Sharing and Data Integration 310 12.6.3 Ontology Engineering and Quality Assurance (QA) 311 12.7 Application of Data Science for COVID-19 313 12.8 Data Challenges During COVID-19 Outbreak 314 12.9 Biomedical Data Science 315 12.10 Conclusion 316 References 317 13 Hybrid Mixed Integer Optimization Method for Document Clustering Based on Semantic Data Matrix 323 Tatiana Avdeenko and Yury Mezentsev 13.1 Introduction 324 13.2 A Method for Constructing a Semantic Matrix of Relations Between Documents and Taxonomy Concepts 327 13.3 Mathematical Statements for Clustering Problem 330 13.3.1 Mathematical Statements for PDC Clustering Problem 330 13.3.2 Mathematical Statements for CC Clustering Problem 334 13.3.3 Relations between PDC Clustering and CC Clustering 336 13.4 Heuristic Hybrid Clustering Algorithm 340 13.5 Application of a Hybrid Optimization Algorithm for Document Clustering 342 13.6 Conclusion 344 Acknowledgment 344 References 344 14 Role of Knowledge Data Science During COVID-19 Pandemic 347 Veena Kumari H. M. and D. S. Suresh 14.1 Introduction 348 14.1.1 Global Health Emergency 350 14.1.2 Timeline of the COVID-19 351 14.2 Literature Review 354 14.3 Model Discussion 356 14.3.1 COVID-19 Time Series Dataset 357 14.3.2 FBProphet Forecasting Model 358 14.3.3 Data Preprocessing 360 14.3.4 Data Visualization 360 14.4 Results and Discussions 362 14.4.1 Analysis and Forecasting: The World 362 14.4.2 Performance Metrics 371 14.4.3 Analysis and Forecasting: The Top 20 Countries 377 14.5 Conclusion 388 References 389 15 Semantic Data Science in the COVID-19 Pandemic 393 Michael DeBellis and Biswanath Dutta 15.1 Crises Often Are Catalysts for New Technologies 393 15.1.1 Definitions 394 15.1.2 Methodology 395 15.2 The Domains of COVID-19 Semantic Data Science Research 397 15.2.1 Surveys 398 15.2.2 Semantic Search 399 15.2.2.1 Enhancing the CORD-19 Dataset with Semantic Data 399 15.2.2.2 CORD-19-on-FHIR – Semantics for COVID-19 Discovery 400 15.2.2.3 Semantic Search on Amazon Web Services (AWS) 400 15.2.2.4 COVID*GRAPH 402 15.2.2.5 Network Graph Visualization of CORD-19 403 15.2.2.6 COVID-19 on the Web 404 15.2.3 Statistics 405 15.2.3.1 The Johns Hopkins COVID-19 Dashboard 405 15.2.3.2 The NY Times Dataset 406 15.2.4 Surveillance 406 15.2.4.1 An IoT Framework for Remote Patient Monitoring 406 15.2.4.2 Risk Factor Discovery 408 15.2.4.3 COVID-19 Surveillance in a Primary Care Network 408 15.2.5 Clinical Trials 409 15.2.6 Drug Repurposing 411 15.2.7 Vocabularies 414 15.2.8 Data Analysis 415 15.2.8.1 CODO 415 15.2.8.2 COVID-19 Phenotypes 416 15.2.8.3 Detection of “Fake News” 417 15.2.8.4 Ontology-Driven Weak Supervision for Clinical Entity Classification 417 15.2.9 Harmonization 418 15.3 Discussion 418 15.3.1 Privacy Issues 420 15.3.2 Domains that May Currently be Under Utilized 421 15.3.2.1 Detection of Fake News 421 15.3.2.2 Harmonization 421 15.3.3 Machine Learning and Semantic Technology: Synergy Not Competition 422 15.3.4 Conclusion 423 Acknowledgment 423 References 423 Index 427


Best Sellers


Product Details
  • ISBN-13: 9781119864981
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: Wiley-Scrivener
  • Height: 10 mm
  • No of Pages: 464
  • Series Title: Advances in Intelligent and Scientific Computing
  • Sub Title: Theory, Practice and Application
  • Width: 10 mm
  • ISBN-10: 1119864984
  • Publisher Date: 30 Aug 2022
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Spine Width: 10 mm
  • Weight: 770 gr


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Data Science with Semantic Technologies: Theory, Practice and Application(Advances in Intelligent and Scientific Computing)
John Wiley & Sons Inc -
Data Science with Semantic Technologies: Theory, Practice and Application(Advances in Intelligent and Scientific Computing)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Data Science with Semantic Technologies: Theory, Practice and Application(Advances in Intelligent and Scientific Computing)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA