On Detection: (English)

On Detection: (English)

          
5
4
3
2
1

Out of Stock


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Notify me when this book is in stock
Add to Wishlist
X

About the Book

As we move deep into nanometer regime of CMOS VLSI (45nm node and below), the device noise margin gets sharply eroded because of continuous lowering of device threshold voltage together with ever increasing rate of signal transitions driven by the consistent demand for higher performance. Sharp erosion of device noise margin vastly increases the likelihood of intermittent failures (also known as parametric failures) during device operation as opposed to permanent failures caused by physical defects introduced during manufacturing process. The major sources of intermittent failures are capacitive crosstalk between neighbor interconnects, abnormal drop in power supply voltage (also known as droop), localized thermal gradient, and soft errors caused by impact of high energy particles on semiconductor surface. In nanometer technology, these intermittent failures largely outnumber the permanent failures caused by physical defects. Therefore, it is of paramount importance to come up with efficient test generation and test application methods to accurately detect and characterize these classes of failures. Soft error rate (SER) is an important design metric used in semiconductor industry and represented by number of such errors encountered per Billion hours of device operation, known as Failure-In-Time (FIT) rate. Soft errors are rare events. Traditional techniques for SER characterization involve testing multiple devices in parallel, or testing the device while keeping it in a high energy neutron bombardment chamber to artificially accelerate the occurrence of single events. Motivated by the fact that measurement of SER incurs high time and cost overhead, in this thesis, we propose a two step approach: " a new filtering technique based on amplitude of the noise pulse, which significantly reduces the set of soft error susceptible nodes to be considered for a given design; followed by an Integer Linear Program (ILP)-based pattern generation technique that accelerates the SER characterization process by 1-2 orders of magnitude compared to the current state-of-the-art. During test application, it is important to distinguish between an intermittent failure and a permanent failure. Motivated by the fact that most of the intermittent failures are temporally sparse in nature, we present a novel design-for-testability (DFT) architecture which facilitates application of the same test vector twice in a row. The underlying assumption here is that a soft fail will not manifest its effect in two consecutive test cycles whereas the error caused by a physical defect will produce an identically corrupt output signature in both test cycles. Therefore, comparing the output signature for two consecutive applications of the same test vector will accurately distinguish between a soft fail and a hard fail. We show application of this DFT technique in measuring soft error rate as well as other circuit marginality related parametric failures, such as thermal hot-spot induced delay failures. A major contribution of this thesis lies on investigating the effect of multiple sources of noise acting together in exacerbating the noise effect even further. The existing literature on signal integrity verification and test falls short of taking the combined noise effects into account. We particularly focus on capacitive crosstalk on long signal nets. A typical long net is capacitively coupled with multiple aggressors and also tend to have multiple fanout gates. Gate leakage current that originates in fanout receivers, flows backward and terminates in the driver causing a shift in driver output voltage. This effect becomes more prominent as...


Best Sellers


Product Details
  • ISBN-13: 9781243764584
  • Publisher: Proquest, Umi Dissertation Publishing
  • Publisher Imprint: Proquest, Umi Dissertation Publishing
  • Height: 254 mm
  • No of Pages: 156
  • Series Title: English
  • Weight: 322 gr
  • ISBN-10: 1243764589
  • Publisher Date: 01 Sep 2011
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Spine Width: 10 mm
  • Width: 203 mm


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
On Detection: (English)
Proquest, Umi Dissertation Publishing -
On Detection: (English)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

On Detection: (English)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA