Home > Mathematics and Science Textbooks > Physics > Quantum physics > A Development of Quantum Mechanics: Based on Symmetry Considerations(2 Fundamental Theories of Physics)
11%
A Development of Quantum Mechanics: Based on Symmetry Considerations(2 Fundamental Theories of Physics)

A Development of Quantum Mechanics: Based on Symmetry Considerations(2 Fundamental Theories of Physics)

          
5
4
3
2
1

Out of Stock


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Notify me when this book is in stock
Add to Wishlist

About the Book

The theory of quantum mechanics continues to appear arbitrary and abstruse to new students; and to many veterans, it has become acceptable and useable only because it is familiar. Yet, this theory is at the basis of all modern physics, chem- istry, and engineering, describing, as it does, the behavior of the submicroscopic particles making up all matter. So it needs to be presented more effectively to a diverse audience. The primary question is, I believe, 'What can be considered self-evident?' Indeed, what do certain key experiments reveal about the workings of nature? How can we consider that some probabilities are not a result of our ignorance, but instead, fundamental properties? We must pay particular attention to the subject of what we can do, what we cannot do, and what we can and cannot observe. We can prepare a homogeneous beam of almost independent particles by boiling electrons out of a metal and accelerating them by a given potential drop. We cannot follow an electron in- dividually in the beam without introducing conditions that destroy the beam's homogeneity, but we can detennine when electrons arrive at a given position.

Table of Contents:
1 / Quantization of Translatory Motion.- 1.1. Background Remarks on Time and Space.- 1.2. The Statistical Nature of Position, Velocity, and Momentum.- 1.3. A State Function Governing Translation.- 1.4. Diffraction by Neighboring Parallel Slits.- 1.5. Diffraction by Molecules.- 1.6. Dependence of the Function for a Definite Energy State on Time.- 1.7. Independent Movements within a State.- 1.8. The Continuum of Translational States.- 1.9. Periodic, Rectangularly Symmetric, Free Motion.- 1.10. Enumerating and Filling Translational States.- 1.11. Translational Energy of an Ideal Gas.- 1.12. Standing-Wave Translational Functions.- 1.13. Confined Rectangularly Symmetric Motion.- 1.14. Attenuated Motion.- 1.15. Joining Regions of Differing Potentials 3.- Discussion Questions.- Problems.- References.- 2 / Quantization of Rotatory Motion.- 2.1. Separation of Different Modes of Motion from Each Other.- 2.2. One-Particle Model for a Linear Rotator.- 2.3. Variation of ? in a Spherically Symmetric Field.- 2.4. The Rotational State Described by the Traveling Wave.- 2.5. Quantization of the Simple Rotator.- 2.6. Standing-Wave Rotational Functions.- 2.7. Energy Levels for a Two-Dimensional Rotator.- 2.8. Rotational Spectrum of a Linear Molecule.- 2.9. Broadening of Spectral Lines.- 2.10. Angular Momenta and the Resultant Energies for a Nonlinear Rotator.- 2.11. Quantizations of Prolate and Oblate Rotators.- 2.12. The Asymmetric Rotator.- 2.13. Dependence of ? on ? in a Spherically Symmetric Field.- 2.14. Explicit State Functions for Angular Motion in a Central Field.- Discussion Questions.- Problems.- References.- 3 / Quantization of Vibratory Motion.- 3.1. Additional Concerted Movements.- 3.2. Vibrational Kinetic and Potential Energies for a Diatomic Molecule.- 3.3. Derivatives of the State Function in Regions where the Potential Energy is not Constant.- 3.4. The Schrödinger Equation for Simple Harmonic Motion.- 3.5. Suitable State Functions for the Harmonic Oscillator.- 3.6. Properties of the Harmonic Oscillator ?v’s.- 3.7. Transitions between Vibrational Energy Levels.- 3.8. Vibrational Spectrum of a Diatomic Molecule.- 3.9. Anharmonicities and their Net Effects.- 3.10. Spectra of Polyatomic Molecules.- 3.11. Raman Spectra.- 3.12. The State Sum for a Vibrational Mode.- 3.13. Operator Formulations of the Harmonic Oscillator Equation.- Discussion Questions.- Problems.- References.- 4 / Radial Motion in a Coulombic Field.- 4.1. A More Complicated Oscillation.- 4.2. Representing the Axial and Angular Motions of Two Particles Bound Together.- 4.3. Differential Equations Governing Variations in a State Function.- 4.4. An Orthogonal-Coordinate Representation of ?2.- 4.5. Separating the Radial Variable from the Angular Variables in the Schrödinger Equation.- 4.6. The Radial Equation for an Electron — Nucleus System.- 4.7. Laguerre Polynomials.- 4.8. Quantization of the Radial Motion.- 4.9. Electronic Spectrum of a Hydrogen-like Atom or Ion.- 4.10. Uninuclear Multi-electron Structures.- 4.11. Useful Operator Formulations of the Radial Equation.- Discussion Questions.- Problems.- References.- 5 / Quantum Mechanical Operators.- 5.1. Dependence of Observables on the State Function.- 5.2. Eigenvalue Equations.- 5.3. Formula for the Expectation Value.- 5.4. The Dirac Delta.- 5.5. Operators for Momenta and Energy.- 5.6. The Hamiltonian Operator.- 5.7. Shift Operators for the Harmonic Oscillator.- 5.8. Nodeless Solutions.- 5.9. Acceptable Wavy Solutions.- 5.10. The Inverse Operator as the Adjoint of an Operator.- 5.11. Shift Operators for a Hydrogen-like Atom.- 5.12. Spontaneous Decay of an Unstable State.- Discussion Questions.- Problems.- References.- 6 / Wave Packets, Potentials, and Forces.- 6.1. Mixing Wave Functions.- 6.2. Fourier Series and Fourier Integrals.- 6.3. Broadening of a Level Caused by Instability.- 6.4. A Gaussian Wave Packet and its Wavevector Representation.- 6.5. An Arbitrary Superposition of Simple Planar Waves.- 6.6. The De Broglie Angular Frequency.- 6.7. Variations of a Wave Function and Observable Properties with Time.- 6.8. Generalizing Newton’s Laws.- 6.9. Scalar and Vector Potentials.- 6.10. The Lorentz Force Law.- 6.11. Phase Changes along a Given Path through a Field.- 6.12. Quantization of Magnetic Flux.- 6.13. Effect of a Field on Two-Slit Diffraction.- 6.14. Magnetic and Electric Aharonov—Bohm Effects.- Discussion Questions.- Problems.- References.- 7 / Angular Motion in a Spherically Symmetric Field.- 7.1. Conditions on the Angular Eigenfunctions.- 7.2. The Homogeneous Polynomial Factor.- 7.3. Solutions Derived from the Reciprocal of the Radius Vector.- 7.4. Dependence on the Azimuthal Angle.- 7.5. Dependence on the Colatitude Angle.- 7.6. Normalizing the Angular Eigenfunctions.- 7.7. Mutual Orthogonality of the Angular Eigenfunctions.- 7.8. Spherical-Harmonic Analysis of a Pure Planar Wave.- 7.9. Schrödinger Equation for Radial Constituents of Free Motion.- Discussion Questions.- Problems.- References.- 8 / Operators for Angular Momentum and Spin.- 8.1. Rotational States, Spin States, and Suitable Composites.- 8.2. The Azimuthal-Angle Operator Governing Angular Momentum.- 8.3. Cartesian Angular-Momentum Operators.- 8.4. Expressions Governing Rotational Standing Waves.- 8.5. Angular Momentum Shift Operators.- 8.6. The Integral or Half-Integral of Quantum Number M.- 8.7. Magnetic Energy Associated with an Angular Momentum.- 8.8. Observing Spatial Quantization in a Beam.- 8.9. Eigenoperators and Eigenfunctions for Spin.- 8.10. Relating State Functions for Different Magnetic Quantum Numbers.- 8.11. Combining Angular Momenta.- Discussion Questions.- Problems.- References.- 9 / Propagation, Spreading, and Scattering.- 9.1. The Current Associated with Propagation.- 9.2. An Evolution Operator.- 9.3. Spreading of a Gaussian Wave Packet.- 9.4. Existence of Scattering Centers in Materials.- 9.5. Cross Sections Presented by Scattering Centers.- 9.6. Pure Outgoing, Incoming, and Standing Spherical Waves.- 9.7. Possible Effects of Centers on the Partial Waves.- 9.8. Contributions to Various Cross Sections.- 9.9. A Classical Model for Scattering Centers.- 9.10. Nuclear Radii.- 9.11. Resonance.- 9.12. The Resonant State with Reaction.- 9.13. Singularity in the Partial Wave Amplitude Ratio at a Physical State.- Discussion Questions.- Problems.- References.- 10 / Investigating Multiparticle Systems.- 10.1. Quantum Mechanical Particles and Quasi Particles.- 10.2. The Variation Theorem.- 10.3. Separation of Particle Variables.- 10.4. Indistinguishability of Identical Particles in a Quantal System.- 10.5. Fundamental Combinatory Rules.- 10.6. Symmetrizing and Antisymmetrizing Operations.- 10.7. Basis for the Pauli Exclusion Principle.- 10.8. Relating the Energy of a Plural Paired-particle System to One- and Two-Particle Effects.- Discussion Questions.- Problems.- References.- Answers to Problems.- Name Index.


Best Sellers


Product Details
  • ISBN-13: 9789027715876
  • Publisher: Springer
  • Publisher Imprint: Kluwer Academic Publishers
  • Depth: 25
  • Height: 250 mm
  • No of Pages: 356
  • Series Title: 2 Fundamental Theories of Physics
  • Weight: 750 gr
  • ISBN-10: 9027715874
  • Publisher Date: 30 Nov 1983
  • Binding: Hardback
  • Edition: 1984 ed.
  • Language: English
  • Returnable: Y
  • Sub Title: Based on Symmetry Considerations
  • Width: 169 mm


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
A Development of Quantum Mechanics: Based on Symmetry Considerations(2 Fundamental Theories of Physics)
Springer -
A Development of Quantum Mechanics: Based on Symmetry Considerations(2 Fundamental Theories of Physics)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

A Development of Quantum Mechanics: Based on Symmetry Considerations(2 Fundamental Theories of Physics)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA