About the Book
Civil engineering failures currently amount to 5 to 10 % of the total investment in new buildings and structures. These failures not only represent important cost considerations, they also have an environmental burden associated with them. Structures often deteriorate because not enough attention is given during the design stage and most standards for structural design do not cover design for service life. Designing for durability is often left to the structural designer or architect who may not have the necessary skills, and the result is all too often failure, incurring high maintenance and repair costs. Knowledge of the long-term behaviour of materials, building components and structures is the basis for avoiding these failures. Durability of engineering structures uses on the design of buildings for service life, effective maintenance and repair techniques in order to reduce the likelihood of failure. It describes the in situ performance of all the major man-made materials used in civil engineering construction - metals (steel and aluminium), concrete and wood. In addition some relatively new high-performance materials are discussed - high-performance concrete, high-performance steel and fibre-reinforced polymers (FRP). Deterioration mechanisms and the measures to counteract these, as well as subsequent maintenance and repair techniques are also considered and the latest standards on durability and repair are explained. Strategies for durability, maintenance and repair, including life cycle costing and environmental life cycle assessment methods are discussed. Finally practical case studies show how repairs can be made and the best ways of ensuring long term durability. This book is aimed at students in civil engineering, engineers, architects, contractors, plant managers, maintenance managers and inspection engineers.
About the Author: Jan Bijen is Professor of Materials Science in the Civil Engineering Materials Section of the Faculty of Civil Engineering and Geosciences at Delft University of Technology, the Netherlands. He is an expert on civil engineering materials, including durability problems and the environmental impact of construction materials. He is also the Director of FEMMASSE BV, a supplier of software for materials and structural engineering for the building industry, and Director of BouwQ BV, a professional association in the Netherlands which focuses on quality assessment of building structures.
As a consultant he has worked on the design for durability of major projects, such as the building of the Saudi Arabia-Bahrain Causeway and the Great Belt bridges in Denmark. He also worked on the Deira-Shindagah tunnel in Dubai, the Al Hamdi Suez Canal tunnel, the conservation of the Zeeland bridge in the Netherlands, the arbitration of the Dubai Dry Docks, and the conservation of the steel structures of the Eastern Scheldt Barrier and the Maeslant Barrier in the Netherlands.