Home > Mathematics and Science Textbooks > Mathematics > Calculus and mathematical analysis > Differential calculus and equations > Elliptic Partial Differential Operators and Symplectic Algebra: (Memoirs of the American Mathematical Society)
Elliptic Partial Differential Operators and Symplectic Algebra: (Memoirs of the American Mathematical Society)

Elliptic Partial Differential Operators and Symplectic Algebra: (Memoirs of the American Mathematical Society)

          
5
4
3
2
1

Out of Stock


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Notify me when this book is in stock
Add to Wishlist

About the Book

This investigation introduces a new description and classification for the set of all self-adjoint operators (not just those defined by differential boundary conditions) which are generated by a linear elliptic partial differential expression $A(\mathbf{x},D)=\sum_{0\,\leq\,\lefts\right\,\leq\,2m}a_{s} (\mathbf{x})D^{s}\;\text{for all}\;\mathbf{x}\in\Omega$ in a region $\Omega$, with compact closure $\overline{\Omega}$ and $C^{\infty}$-smooth boundary $\partial\Omega$, in Euclidean space $\mathbb{E}^{r}$ $(r\geq2).$ The order $2m\geq2$ and the spatial dimension $r\geq2$ are arbitrary. We assume that the coefficients $a_{s}\in C^{\infty}(\overline {\Omega})$ are complex-valued, except real for the highest order terms (where $\lefts\right =2m$) which satisfy the uniform ellipticity condition in $\overline{\Omega}$.In addition, $A(\cdot,D)$ is Lagrange symmetric so that the corresponding linear operator $A$, on its classical domain $D(A):=C_{0}^{\infty}(\Omega)\subset L_{2}(\Omega)$, is symmetric; for example the familiar Laplacian $\Delta$ and the higher order polyharmonic operators $\Delta^{m}$. Through the methods of complex symplectic algebra, which the authors have previously developed for ordinary differential operators, the Stone-von Neumann theory of symmetric linear operators in Hilbert space is reformulated and adapted to the determination of all self-adjoint extensions of $A$ on $D(A)$, by means of an abstract generalization of the Glazman-Krein-Naimark (GKN) Theorem.In particular the authors construct a natural bijective correspondence between the set $\{T\}$ of all such self-adjoint operators on domains $D(T)\supset D(A)$, and the set $\{\mathsf{L}\}$ of all complete Lagrangian subspaces of the boundary complex symplectic space $\mathsf{S}=D(T_{1}\,/\,D(T_{0})$, where $T_{0}$ on $D(T_{0})$ and $T_{1}$ on $D(T_{1})$ are the minimal and maximal operators, respectively, determined by $A$ on $D(A)\subset L_{2}(\Omega)$. In the case of the elliptic partial differential operator $A$, we verify $D(T_{0})=\overset{\text{o}}{W}{}^{2m}(\Omega)$ and provide a novel definition and structural analysis for $D(T_{1})=\overset{A}{W}{}^{2m}(\Omega)$, which extends the GKN-theory from ordinary differential operators to a certain class of elliptic partial differential operators.Thus the boundary complex symplectic space $\mathsf{S}=\overset{A} {W} {}^{2m}(\Omega)\,/\,\overset{\text{o}}{W}{}^{2m}(\Omega)$ effects a classification of all self-adjoint extensions of $A$ on $D(A)$, including those operators that are not specified by differential boundary conditions, but instead by global (i. e. non-local) generalized boundary conditions. The scope of the theory is illustrated by several familiar, and other quite unusual, self-adjoint operators described in special examples. An Appendix is attached to present the basic definitions and concepts of differential topology and functional analysis on differentiable manifolds. In this Appendix care is taken to list and explain all special mathematical terms and symbols - in particular, the notations for Sobolev Hilbert spaces and the appropriate trace theorems. An Acknowledgment and subject Index complete this memoir.

Table of Contents:
Introduction: Organization of results Review of Hilbert and symplectic space theory GKN-theory for elliptic differential operators Examples of the general theory Global boundary conditions: Modified Laplace operators Appendix A. List of symbols and notations Bibliography Index.


Best Sellers


Product Details
  • ISBN-13: 9780821832356
  • Publisher: American Mathematical Society
  • Publisher Imprint: American Mathematical Society
  • Language: English
  • Returnable: Y
  • Weight: 238 gr
  • ISBN-10: 0821832352
  • Publisher Date: 01 Dec 2003
  • Binding: Paperback
  • No of Pages: 111
  • Series Title: Memoirs of the American Mathematical Society


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Elliptic Partial Differential Operators and Symplectic Algebra: (Memoirs of the American Mathematical Society)
American Mathematical Society -
Elliptic Partial Differential Operators and Symplectic Algebra: (Memoirs of the American Mathematical Society)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Elliptic Partial Differential Operators and Symplectic Algebra: (Memoirs of the American Mathematical Society)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA