Home > Mathematics and Science Textbooks > Chemistry > Essentials of Computational Chemistry: Theories and Models
25%
Essentials of Computational Chemistry: Theories and Models

Essentials of Computational Chemistry: Theories and Models

5       |  6 Reviews 
5
4
3
2
1

Available


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

Essentials of Computational Chemistry provides a balanced introduction to this dynamic subject.  Suitable for both experimentalists and theorists, a wide range of samples and applications are included drawn from all key areas.  The book carefully leads the reader thorough the necessary equations providing information explanations and reasoning where necessary and firmly placing each equation in context.

Table of Contents:
Preface to the First Edition xv Preface to the Second Edition xix Acknowledgments xxi 1 What are Theory, Computation, and Modeling? 1 1.1 Definition of Terms 1 1.2 Quantum Mechanics 4 1.3 Computable Quantities 5 1.3.1 Structure 5 1.3.2 Potential Energy Surfaces 6 1.3.3 Chemical Properties 10 1.4 Cost and Efficiency 11 1.4.1 Intrinsic Value 11 1.4.2 Hardware and Software 12 1.4.3 Algorithms 14 1.5 Note on Units 15 Bibliography and Suggested Additional Reading 15 References 16 2 Molecular Mechanics 17 2.1 History and Fundamental Assumptions 17 2.2 Potential Energy Functional Forms 19 2.2.1 Bond Stretching 19 2.2.2 Valence Angle Bending 21 2.2.3 Torsions 22 2.2.4 van der Waals Interactions 27 2.2.5 Electrostatic Interactions 30 2.2.6 Cross Terms and Additional Non-bonded Terms 34 2.2.7 Parameterization Strategies 36 2.3 Force-field Energies and Thermodynamics 39 2.4 Geometry Optimization 40 2.4.1 Optimization Algorithms 41 2.4.2 Optimization Aspects Specific to Force Fields 46 2.5 Menagerie of Modern Force Fields 50 2.5.1 Available Force Fields 50 2.5.2 Validation 59 2.6 Force Fields and Docking 62 2.7 Case Study: (2R∗,4S∗)-1-Hydroxy-2,4-dimethylhex-5-ene 64 Bibliography and Suggested Additional Reading 66 References 67 3 Simulations of Molecular Ensembles 69 3.1 Relationship Between MM Optima and Real Systems 69 3.2 Phase Space and Trajectories 70 3.2.1 Properties as Ensemble Averages 70 3.2.2 Properties as Time Averages of Trajectories 71 3.3 Molecular Dynamics 72 3.3.1 Harmonic Oscillator Trajectories 72 3.3.2 Non-analytical Systems 74 3.3.3 Practical Issues in Propagation 77 3.3.4 Stochastic Dynamics 79 3.4 Monte Carlo 80 3.4.1 Manipulation of Phase-space Integrals 80 3.4.2 Metropolis Sampling 81 3.5 Ensemble and Dynamical Property Examples 82 3.6 Key Details in Formalism 88 3.6.1 Cutoffs and Boundary Conditions 88 3.6.2 Polarization 90 3.6.3 Control of System Variables 91 3.6.4 Simulation Convergence 93 3.6.5 The Multiple Minima Problem 96 3.7 Force Field Performance in Simulations 98 3.8 Case Study: Silica Sodalite 99 Bibliography and Suggested Additional Reading 101 References 102 4 Foundations of Molecular Orbital Theory 105 4.1 Quantum Mechanics and the Wave Function 105 4.2 The Hamiltonian Operator 106 4.2.1 General Features 106 4.2.2 The Variational Principle 108 4.2.3 The Born–Oppenheimer Approximation 110 4.3 Construction of Trial Wave Functions 111 4.3.1 The LCAO Basis Set Approach 111 4.3.2 The Secular Equation 113 4.4 H¨uckel Theory 115 4.4.1 Fundamental Principles 115 4.4.2 Application to the Allyl System 116 4.5 Many-electron Wave Functions 119 4.5.1 Hartree-product Wave Functions 120 4.5.2 The Hartree Hamiltonian 121 4.5.3 Electron Spin and Antisymmetry 122 4.5.4 Slater Determinants 124 4.5.5 The Hartree-Fock Self-consistent Field Method 126 Bibliography and Suggested Additional Reading 129 References 130 5 Semiempirical Implementations of Molecular Orbital Theory 131 5.1 Semiempirical Philosophy 131 5.1.1 Chemically Virtuous Approximations 131 5.1.2 Analytic Derivatives 133 5.2 Extended H¨uckel Theory 134 5.3 CNDO Formalism 136 5.4 INDO Formalism 139 5.4.1 INDO and INDO/S 139 5.4.2 MINDO/3 and SINDO1 141 5.5 Basic NDDO Formalism 143 5.5.1 MNDO 143 5.5.2 AM1 145 5.5.3 PM3 146 5.6 General Performance Overview of Basic NDDO Models 147 5.6.1 Energetics 147 5.6.2 Geometries 150 5.6.3 Charge Distributions 151 5.7 Ongoing Developments in Semiempirical MO Theory 152 5.7.1 Use of Semiempirical Properties in SAR 152 5.7.2 d Orbitals in NDDO Models 153 5.7.3 SRP Models 155 5.7.4 Linear Scaling 157 5.7.5 Other Changes in Functional Form 157 5.8 Case Study: Asymmetric Alkylation of Benzaldehyde 159 Bibliography and Suggested Additional Reading 162 References 163 6 Ab Initio Implementations of Hartree–Fock Molecular Orbital Theory 165 6.1 Ab Initio Philosophy 165 6.2 Basis Sets 166 6.2.1 Functional Forms 167 6.2.2 Contracted Gaussian Functions 168 6.2.3 Single-ζ , Multiple-ζ , and Split-Valence 170 6.2.4 Polarization Functions 173 6.2.5 Diffuse Functions 176 6.2.6 The HF Limit 176 6.2.7 Effective Core Potentials 178 6.2.8 Sources 180 6.3 Key Technical and Practical Points of Hartree–Fock Theory 180 6.3.1 SCF Convergence 181 6.3.2 Symmetry 182 6.3.3 Open-shell Systems 188 6.3.4 Efficiency of Implementation and Use 190 6.4 General Performance Overview of Ab Initio HF Theory 192 6.4.1 Energetics 192 6.4.2 Geometries 196 6.4.3 Charge Distributions 198 6.5 Case Study: Polymerization of 4-Substituted Aromatic Enynes 199 Bibliography and Suggested Additional Reading 201 References 201 7 Including Electron Correlation in Molecular Orbital Theory 203 7.1 Dynamical vs. Non-dynamical Electron Correlation 203 7.2 Multiconfiguration Self-Consistent Field Theory 205 7.2.1 Conceptual Basis 205 7.2.2 Active Space Specification 207 7.2.3 Full Configuration Interaction 211 7.3 Configuration Interaction 211 7.3.1 Single-determinant Reference 211 7.3.2 Multireference 216 7.4 Perturbation Theory 216 7.4.1 General Principles 216 7.4.2 Single-reference 219 7.4.3 Multireference 223 7.4.4 First-order Perturbation Theory for Some Relativistic Effects 223 7.5 Coupled-cluster Theory 224 7.6 Practical Issues in Application 227 7.6.1 Basis Set Convergence 227 7.6.2 Sensitivity to Reference Wave Function 230 7.6.3 Price/Performance Summary 235 7.7 Parameterized Methods 237 7.7.1 Scaling Correlation Energies 238 7.7.2 Extrapolation 239 7.7.3 Multilevel Methods 239 7.8 Case Study: Ethylenedione Radical Anion 244 Bibliography and Suggested Additional Reading 246 References 247 8 Density Functional Theory 249 8.1 Theoretical Motivation 249 8.1.1 Philosophy 249 8.1.2 Early Approximations 250 8.2 Rigorous Foundation 252 8.2.1 The Hohenberg–Kohn Existence Theorem 252 8.2.2 The Hohenberg–Kohn Variational Theorem 254 8.3 Kohn–Sham Self-consistent Field Methodology 255 8.4 Exchange-correlation Functionals 257 8.4.1 Local Density Approximation 258 8.4.2 Density Gradient and Kinetic Energy Density Corrections 263 8.4.3 Adiabatic Connection Methods 264 8.4.4 Semiempirical DFT 268 8.5 Advantages and Disadvantages of DFT Compared to MO Theory 271 8.5.1 Densities vs. Wave Functions 271 8.5.2 Computational Efficiency 273 8.5.3 Limitations of the KS Formalism 274 8.5.4 Systematic Improvability 278 8.5.5 Worst-case Scenarios 278 8.6 General Performance Overview of DFT 280 8.6.1 Energetics 280 8.6.2 Geometries 291 8.6.3 Charge Distributions 294 8.7 Case Study: Transition-Metal Catalyzed Carbonylation of Methanol 299 Bibliography and Suggested Additional Reading 300 References 301 9 Charge Distribution and Spectroscopic Properties 305 9.1 Properties Related to Charge Distribution 305 9.1.1 Electric Multipole Moments 305 9.1.2 Molecular Electrostatic Potential 308 9.1.3 Partial Atomic Charges 309 9.1.4 Total Spin 324 9.1.5 Polarizability and Hyperpolarizability 325 9.1.6 ESR Hyperfine Coupling Constants 327 9.2 Ionization Potentials and Electron Affinities 330 9.3 Spectroscopy of Nuclear Motion 331 9.3.1 Rotational 332 9.3.2 Vibrational 334 9.4 NMR Spectral Properties 344 9.4.1 Technical Issues 344 9.4.2 Chemical Shifts and Spin–spin Coupling Constants 345 9.5 Case Study: Matrix Isolation of Perfluorinated p-Benzyne 349 Bibliography and Suggested Additional Reading 351 References 351 10 Thermodynamic Properties 355 10.1 Microscopic–macroscopic Connection 355 10.2 Zero-point Vibrational Energy 356 10.3 Ensemble Properties and Basic Statistical Mechanics 357 10.3.1 Ideal Gas Assumption 358 10.3.2 Separability of Energy Components 359 10.3.3 Molecular Electronic Partition Function 360 10.3.4 Molecular Translational Partition Function 361 10.3.5 Molecular Rotational Partition Function 362 10.3.6 Molecular Vibrational Partition Function 364 10.4 Standard-state Heats and Free Energies of Formation and Reaction 366 10.4.1 Direct Computation 367 10.4.2 Parametric Improvement 370 10.4.3 Isodesmic Equations 372 10.5 Technical Caveats 375 10.5.1 Semiempirical Heats of Formation 375 10.5.2 Low-frequency Motions 375 10.5.3 Equilibrium Populations over Multiple Minima 377 10.5.4 Standard-state Conversions 378 10.5.5 Standard-state Free Energies, Equilibrium Constants, and Concentrations 379 10.6 Case Study: Heat of Formation of H2NOH 381 Bibliography and Suggested Additional Reading 383 References 383 11 Implicit Models for Condensed Phases 385 11.1 Condensed-phase Effects on Structure and Reactivity 385 11.1.1 Free Energy of Transfer and Its Physical Components 386 11.1.2 Solvation as It Affects Potential Energy Surfaces 389 11.2 Electrostatic Interactions with a Continuum 393 11.2.1 The Poisson Equation 394 11.2.2 Generalized Born 402 11.2.3 Conductor-like Screening Model 404 11.3 Continuum Models for Non-electrostatic Interactions 406 11.3.1 Specific Component Models 406 11.3.2 Atomic Surface Tensions 407 11.4 Strengths and Weaknesses of Continuum Solvation Models 410 11.4.1 General Performance for Solvation Free Energies 410 11.4.2 Partitioning 416 11.4.3 Non-isotropic Media 416 11.4.4 Potentials of Mean Force and Solvent Structure 419 11.4.5 Molecular Dynamics with Implicit Solvent 420 11.4.6 Equilibrium vs. Non-equilibrium Solvation 421 11.5 Case Study: Aqueous Reductive Dechlorination of Hexachloroethane 422 Bibliography and Suggested Additional Reading 424 References 425 12 Explicit Models for Condensed Phases 429 12.1 Motivation 429 12.2 Computing Free-energy Differences 429 12.2.1 Raw Differences 430 12.2.2 Free-energy Perturbation 432 12.2.3 Slow Growth and Thermodynamic Integration 435 12.2.4 Free-energy Cycles 437 12.2.5 Potentials of Mean Force 439 12.2.6 Technical Issues and Error Analysis 443 12.3 Other Thermodynamic Properties 444 12.4 Solvent Models 445 12.4.1 Classical Models 445 12.4.2 Quantal Models 447 12.5 Relative Merits of Explicit and Implicit Solvent Models 448 12.5.1 Analysis of Solvation Shell Structure and Energetics 448 12.5.2 Speed/Efficiency 450 12.5.3 Non-equilibrium Solvation 450 12.5.4 Mixed Explicit/Implicit Models 451 12.6 Case Study: Binding of Biotin Analogs to Avidin 452 Bibliography and Suggested Additional Reading 454 References 455 13 Hybrid Quantal/Classical Models 457 13.1 Motivation 457 13.2 Boundaries Through Space 458 13.2.1 Unpolarized Interactions 459 13.2.2 Polarized QM/Unpolarized MM 461 13.2.3 Fully Polarized Interactions 466 13.3 Boundaries Through Bonds 467 13.3.1 Linear Combinations of Model Compounds 467 13.3.2 Link Atoms 473 13.3.3 Frozen Orbitals 475 13.4 Empirical Valence Bond Methods 477 13.4.1 Potential Energy Surfaces 478 13.4.2 Following Reaction Paths 480 13.4.3 Generalization to QM/MM 481 13.5 Case Study: Catalytic Mechanism of Yeast Enolase 482 Bibliography and Suggested Additional Reading 484 References 485 14 Excited Electronic States 487 14.1 Determinantal/Configurational Representation of Excited States 487 14.2 Singly Excited States 492 14.2.1 SCF Applicability 493 14.2.2 CI Singles 496 14.2.3 Rydberg States 498 14.3 General Excited State Methods 499 14.3.1 Higher Roots in MCSCF and CI Calculations 499 14.3.2 Propagator Methods and Time-dependent DFT 501 14.4 Sum and Projection Methods 504 14.5 Transition Probabilities 507 14.6 Solvatochromism 511 14.7 Case Study: Organic Light Emitting Diode Alq3 513 Bibliography and Suggested Additional Reading 515 References 516 15 Adiabatic Reaction Dynamics 519 15.1 Reaction Kinetics and Rate Constants 519 15.1.1 Unimolecular Reactions 520 15.1.2 Bimolecular Reactions 521 15.2 Reaction Paths and Transition States 522 15.3 Transition-state Theory 524 15.3.1 Canonical Equation 524 15.3.2 Variational Transition-state Theory 531 15.3.3 Quantum Effects on the Rate Constant 533 15.4 Condensed-phase Dynamics 538 15.5 Non-adiabatic Dynamics 539 15.5.1 General Surface Crossings 539 15.5.2 Marcus Theory 541 15.6 Case Study: Isomerization of Propylene Oxide 544 Bibliography and Suggested Additional Reading 546 References 546 Appendix A Acronym Glossary 549 Appendix B Symmetry and Group Theory 557 B.1 Symmetry Elements 557 B.2 Molecular Point Groups and Irreducible Representations 559 B.3 Assigning Electronic State Symmetries 561 B.4 Symmetry in the Evaluation of Integrals and Partition Functions 562 Appendix C Spin Algebra 565 C.1 Spin Operators 565 C.2 Pure- and Mixed-spin Wave Functions 566 C.3 UHF Wave Functions 571 C.4 Spin Projection/Annihilation 571 Reference 574 Appendix D Orbital Localization 575 D.1 Orbitals as Empirical Constructs 575 D.2 Natural Bond Orbital Analysis 578 References 579 Index 581


Best Sellers


Product Details
  • ISBN-13: 9780470091821
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: John Wiley & Sons Inc
  • Depth: 38
  • Height: 239 mm
  • No of Pages: 624
  • Series Title: English
  • Sub Title: Theories and Models
  • Width: 168 mm
  • ISBN-10: 0470091827
  • Publisher Date: 24 Sep 2004
  • Binding: Paperback
  • Edition: 2
  • Language: English
  • Returnable: N
  • Spine Width: 41 mm
  • Weight: 1024 gr


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

5       |  6 Reviews 
out of (%) reviewers recommend this product
Top Reviews
Rating Snapshot
Select a row below to filter reviews.
5
4
3
2
1
Average Customer Ratings
5       |  6 Reviews 
00 of 0 Reviews
Sort by :
Active Filters

00 of 0 Reviews
SEARCH RESULTS
1–2 of 2 Reviews
    BoxerLover2 - 5 Days ago
    A Thrilling But Totally Believable Murder Mystery

    Read this in one evening. I had planned to do other things with my day, but it was impossible to put down. Every time I tried, I was drawn back to it in less than 5 minutes. I sobbed my eyes out the entire last 100 pages. Highly recommend!

    BoxerLover2 - 5 Days ago
    A Thrilling But Totally Believable Murder Mystery

    Read this in one evening. I had planned to do other things with my day, but it was impossible to put down. Every time I tried, I was drawn back to it in less than 5 minutes. I sobbed my eyes out the entire last 100 pages. Highly recommend!


Sample text
Photo of
    Media Viewer

    Sample text
    Reviews
    Reader Type:
    BoxerLover2
    00 of 0 review

    Your review was submitted!
    Essentials of Computational Chemistry: Theories and Models
    John Wiley & Sons Inc -
    Essentials of Computational Chemistry: Theories and Models
    Writing guidlines
    We want to publish your review, so please:
    • keep your review on the product. Review's that defame author's character will be rejected.
    • Keep your review focused on the product.
    • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
    • Refrain from mentioning competitors or the specific price you paid for the product.
    • Do not include any personally identifiable information, such as full names.

    Essentials of Computational Chemistry: Theories and Models

    Required fields are marked with *

    Review Title*
    Review
      Add Photo Add up to 6 photos
      Would you recommend this product to a friend?
      Tag this Book
      Read more
      Does your review contain spoilers?
      What type of reader best describes you?
      I agree to the terms & conditions
      You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

      CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

      These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


      By submitting any content to Bookswagon, you guarantee that:
      • You are the sole author and owner of the intellectual property rights in the content;
      • All "moral rights" that you may have in such content have been voluntarily waived by you;
      • All content that you post is accurate;
      • You are at least 13 years old;
      • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
      You further agree that you may not submit any content:
      • That is known by you to be false, inaccurate or misleading;
      • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
      • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
      • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
      • For which you were compensated or granted any consideration by any unapproved third party;
      • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
      • That contains any computer viruses, worms or other potentially damaging computer programs or files.
      You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


      For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


      All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

      Accept

      New Arrivals


      Inspired by your browsing history


      Your review has been submitted!

      You've already reviewed this product!
      ASK VIDYA