Home > Mathematics and Science Textbooks > Mathematics > Geometry > Experiencing Geometry: In Euclidean, Spherical and Hyperbolic Spaces
3%
Experiencing Geometry: In Euclidean, Spherical and Hyperbolic Spaces

Experiencing Geometry: In Euclidean, Spherical and Hyperbolic Spaces

          
5
4
3
2
1

Out of Stock


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Notify me when this book is in stock
Add to Wishlist

About the Book

For undergraduate-level courses in Geometry. Henderson invites students to explore the basic ideas of geometry beyond the formulation of proofs. The text conveys a distinctive approach, stimulating students to develop a broader, deeper understanding of mathematics through active participation—including discovery, discussion, and writing about fundamental ideas. It provides a series of interesting, challenging problems, then encourages students to gather their reasonings and understandings of each problem and discuss their findings in an open forum.

Table of Contents:
1. What Is Straight? Problem 1.1: When Do You Call a Line Straight? How Do You Construct a Straight Line? The Symmetries of a Line. Local (and Infinitesimal) Straightness. 2. Straightness on Spheres. Problem 2.1: What Is Straight on a Sphere? Symmetries of Great Circles. Every Geodesic Is a Great Circle. Intrinsic Curvature. 3. What Is an Angle? Problem 3.1: Vertical Angle Theorem (VAT). Problem 3.2: What Is an Angle? Hints for Three Different Proofs. Problem 3.3: Duality Between Points and Lines. 4. Straightness on Cylinders and Cones. Problem 4.1: Straightness on Cylinders and Cones. Cones with Varying Cone Angles. Geodesics on Cylinders. Geodesics on Cones. Locally Isometric. Is “Shortest” Always “Straight”? Relations to Differential Geometry. 5. Straightness on Hyperbolic Planes. A Short History of Hyperbolic Geometry. Constructions of Hyperbolic Planes. Hyperbolic Planes of Different Raddi (Curvature). Problem 5.1: What Is Straight in a Hyperbolic Plane? Problem 5.2: The Pseudosphere Is Hyperbolic. Problem 5.3: Rotations and Reflections on Surfaces. 6. Triangles and Congruencies. Geodesics are Locally Unique. Problem 6.1: Properties of Geodesics. Problem 6.2: Isosceles Triangle Theorem (ITT). Circles. Problem 6.3: Bisector Constructions. Problem 6.4: Side-Angle-Side (SAS). Problem 6.5: Angle-Side-Angle (ASA). 7. Area and Holonomy. Problem 7.1: The Area of a Triangle on a Sphere. Problem 7.2: Area of Hyperbolic Triangles. Problem 7.3: Sum of the Angles of a Triangle. Introduction Parallel Transport and Holonomy. Problem 7.4: The Holonomy of a Small Triangle. The Gauss-Bonnet Formula for Triangles. Problem 7.5: Gauss-Bonnet Formula for Polygons. Gauss-Bonnet Formula for Polygons on Surfaces. 8. Parallel Transport. Problem 8.1: Euclid's Exterior Angle Theorem (EEAT). Problem 8.2: Symmetries of Parallel Transported Lines. Problem 8.3: Transversals through a Midpoint. Problem 8.4: What is “Parallel”? 9. SSS, ASS, SAA and AAA. Problem 9.1: Side-Side-Side (SSS). Problem 9.2: Angle-Side-Side (ASS). Problem 9.3: Side-Angle-Angle (SAA). Problem 9.4: Angle-Angle-Angle (AAA). 10. Parallel Postulates. Parallel Lines on the Plane are Special. Problem 10.1: Parallel Transport on the Plane. Problem 10.2: Parallel Postulates Not Involving (Non-) Intersecting Lines). Equidistant Curves on Spheres and Hyperbolic Planes. Problem 10.3: Parallel Postulates Involving (Non-) Intersecting Lines. Problem 10.4: EFP and PPP on Sphere and Hyperbolic Plane. Comparisons of Plane, Spheres, and Hyperbolic Planes. Some Historical Notes on the Parallel Postulates. 11. Isometries and Patterns. Problem 11.1: Isometries. Symmetries and Patterns. Problem 11.2: Examples of Patterns. Problem 11.3: Isometry Determined by Three Points. Problem 11.4: Classification of Isometries. Problem 11.5: Classification of Discrete Strip Patterns. Problem 11.6: Classification of Finite Plane Patterns. Problem 11.7: Regular Tilings with Polygons. Geometric Meaning of Abstract Group Terminology. 12. Dissection Theory. What is Dissection Theory? Problem 12.1: Dissect Plane Triangle and Parallelogram. Dissection Theory on Spheres and Hyperbolic Planes. Problem 12.2: Khayyam Quadrilaterals. Problem 12.3: Dissect Spherical and Hyperbolic Triangles and Khayyam Parallelograms. Problem 12.4: Spherical Polygons Dissect to Lunes. 13. Square Roots, Pythagoras and Similar Triangles. Square Roots. Problem 13.1: A Rectangle Dissects into a Square. Baudhayana's Sulbasutram. Problem 13.2: Equivalence of Squares. Any Polygon Can Be Dissected into a Square. Problem 13.3: Similar Triangles. Three-Dimensional Dissections and Hilbert's Third Problem. 14. Circles in the Plane. Problem 14.1: Angles and Power Points of Plane Circles. Problem 14.2: Inversions in Circles. Problem 14.3: Applications of Inversions. 15. Projection of a Sphere onto a Plane. Problem 15.1: Charts Must Distort. Problem 15.2: Gnomic Projection. Problem 15.3: Cylindrical Projection. Problem 15.4: Stereographic Projection. 16. Projections (Models) of Hyperbolic Planes. Problem 16.1: The Upper Half Plane Model. Problem 16.2: Upper Half Plane Is Model of Annular Hyperbolic Plane. Problem 16.3: Properties of Hyperbolic Geodesics. Problem 16.4: Hyperbolic Ideal Triangles. Problem 16.5: Poincaré Disk Model. Problem 16.6: Projective Disk Model. 17. Geometric 2-Manifolds and Coverings. Problem 17.1: Geodesics on Cylinders and Cones. n-Sheeted Coverings of a Cylinder. n-Sheeted (Branched) Coverings of a Cone. Problem 17.2: Flat Torus and Flat Klein Bottle. Problem 17.3: Universal Covering of Flat 2-Manifolds. Problem 17.4: Spherical 2-Manifolds. Coverings of a Sphere. Problem 17.5: Hyperbolic Manifolds. Problem 17.6: Area, Euler Number, and Gauss-Bonnet. Triangles on Geometric Manifolds. Problem 17.7: Can the Bug Tell Which Manifold? 18. Geometric Solutions of Quadratic and Cubic Equations. Problem 18.1: Quadratic Equations. Problem 18.2: Conic Sections and Cube Roots. Problem 18.3: Roots of Cubic Equations. Problem 18.4: Algebraic Solution of Cubics. So What Does This All Point To? 19. Trigonometry and Duality. Problem 19.1: Circumference of a Circle. Problem 19.2: Law of Cosines. Problem 19.3: Law of Sines. Duality on a Sphere. Problem 19.4: The Dual of a Small Triangle. Problem 19.5: Trigonometry with Congruences. Duality on the Projective Plane. Problem 19.6: Properties on the Projective Plane. Perspective Drawings and Vision. 20. 3-Spheres and Hyperbolic 3-Spaces. Problem 20.1: Explain 3-Space to 2-D Person. Problem 20.2: A 3-Sphere in 4-Space. Problem 20.3: Hyperbolic 3-Space, Upper Half Space. Problem 20.4: Disjoint Equidistant Great Circles. Problem 20.5: Hyperbolic and Spherical Symmetries. Problem 20.6: Triangles in 3-Dimensional Spaces. 21. Polyhedra. Definitions and Terminology. Problem 21.1: Measure of a Solid Angle. Problem 21.2: Edges and Face Angles. Problem 21.3: Edges and Dihedral Angles. Problem 21.4: Other Tetrahedra Congruence Theorems. Problem 21.5: The Five Regular Polyhedra. 22. 3-Manifolds—The Shape of Space. Space as an Oriented Geometric 3-Manifold. Problem 22.1: Is Our Universe Non-Euclidean? Problem 22.2: Euclidean 3-Manifolds. Problem 22.3: Dodecahedral 3-Manifolds. Problem 22.4: Some Other Geometric 3-Manifolds. Cosmic Background Radiation. Problem 22.5: Circle Patterns Show the Shape of Space. Appendix A—Euclid's Definitions, Postulates, and Common Notions. Definitions. Postulates. Common Notions. Appendix B—Square Roots in the Sulbasutram. Introduction. Construction of the Savisesa for the Square Root of Two. Fractions in the Sulbasutram. Comparing with the Divide-and-Average (D&A) Method. Conclusions. Annotated Bibliography. AT: Ancient Texts. CG: Computers and Geometry. DG: Differential Geometry. Di: Dissections. DS: Dimensions and Scale. GC: Geometry in Different Cultures. Hi: History. MP: Models, Polyhedra. Na: Nature. NE: None-Euclideam Geometries (Mostly Hyperbolic). Ph: Philosophy. RN: Real Numbers. SE: Surveys and General Expositions. SG: Symmetry and Groups. SP: Spherical and Projective Geometry. TG: Teaching Geometry. Tp: Topology. Tx: Geometry Texts. Un: The Physical Universe. Z: Miscellaneous. Index.


Best Sellers


Product Details
  • ISBN-13: 9780130309532
  • Publisher: Pearson Education (US)
  • Publisher Imprint: Pearson
  • Edition: 2 Rev ed
  • Language: English
  • Returnable: Y
  • Sub Title: In Euclidean, Spherical and Hyperbolic Spaces
  • Width: 236 mm
  • ISBN-10: 0130309532
  • Publisher Date: 03 Nov 2000
  • Binding: Hardback
  • Height: 236 mm
  • No of Pages: 386
  • Spine Width: 25 mm
  • Weight: 625 gr


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Experiencing Geometry: In Euclidean, Spherical and Hyperbolic Spaces
Pearson Education (US) -
Experiencing Geometry: In Euclidean, Spherical and Hyperbolic Spaces
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Experiencing Geometry: In Euclidean, Spherical and Hyperbolic Spaces

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA