Home > Science, Technology & Agriculture > Technology: general issues > Engineering: general > Finite Systemtheorie: (Teubner Studienbücher Technik)
36%
Finite Systemtheorie: (Teubner Studienbücher Technik)

Finite Systemtheorie: (Teubner Studienbücher Technik)

          
5
4
3
2
1

Available


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

Die zeitdiskreten Systeme, die in der Nachrichtentechnik und in der Regelungstechnik eine ständig wachsende Bedeutung bekommen, werden heute gewöhnlich durch die (infinite) Z-Transformation beschrieben. Gegenstand dieses Buches ist im Gegensatz dazu eine finite Beschrei- bung dieser Systeme (ohne die Begriffe "kontinuierlich", "unendlich" und "konvergent"), die unmittelbar auf dem Digitalrechner implementierbar ist. Das wird dadurch möglich, daß man die Zeitfunktionen als per i- disehe Impulsfolgen annimmt. Das Buch ist das erweiterte Skriptum einer Vorlesung, die ich seit 1972 an der Technischen Hochschule Darmstadt halte. Abgesehen von § 1, der einen kurzen Überblick über die konventionelle infinite Systemtheorie gibt, ist an mathematischen Vorkenntnissen lediglich die Matrizenalgebra erforder lieh. Ich danke den Herren Dr. -Ing. Hermann Kremer und Dipl. -Ing. Raimund L ü c k e r für fruchtbare Diskussionen und für die kritische Durchsicht des Manuskripts. Darmstadt, im Sommer 1976 Wilhelm Klein "Man kann die Ingenieure bedauern, die es so lange aufge- schoben haben, sich mit der Laplace-Transformation zu befreunden, bis sie ins Museum verwiesen wurde. Aber so etwas ist schon öfter geschehen. Wir Mathematiker werden auch für unsere Fahrlässigkeit bestraft: Unsere Strafe ist die Aufgabe, ihnen die Laplace-Transformation nun wieder auszutreiben. " Der Mathematiker Hans Freudenthai im Jahre 1958 [9. S]. INHALT Seite 1 § 1. überblick über die infinite Systemtheorie 1. 1. Der Begriff des Systems 1 2 1. 2. Infinite und finite Systemtheorie 6 1. 3. DerZeitbereich 6 1. 3. 1. Impuls und Impulsantwort 6 1. 3. 2. Das Faltungsintegral 9 1. 4.

Table of Contents:
§ 1. Überblick über die infinite Systemtheorie.- 1.1. Der Begriff des Systems.- 1.2. Infinite und finite Systemtheorie.- 1.3. Der Zeitbereich.- 1.4. Der Frequenzbereich.- 1.5. Der Z-Bereich.- § 2. Der finite Zeitbereich.- 2.1. Zeitdiskrete Systeme.- 2.2. Die Pulsantwort und die zyklische Faltung.- 2.3. Zusammenhang mit der klassischen Systemtheorie.- 2.4. Die Z-Koeffizienten.- 2.5. Ermittlung der Ausgangsfunktion y aus der Eingangsfunktion x und den Z-Koeffizienten.- 2.6. Systemidentifikation bei überlappten Perioden.- 2.7. Dreiecksfaltung.- 2.8. Das Überlappen der Impulsantworten.- 2.9. Systemidentifikation bei nichtüberlappten Perioden.- 2. 10. Systemidentifikation bei fehlerhaften Meßwerten und unbekanntem Systemgrad.- 2.11. Realisierungen.- § 3. Der finite Z-Bereich.- 3.1. Die finite Z-Systemfunktion in der Quotientenform.- 3.2. Z-Systemfunktion und Impulsantwort.- 3.3. Zahlenbeispiel.- 3.4. Finite Z-Transformation mit komplexen Frequenzen.- 3.5. Die finite Laplacesystemfunktion in Produktform.- 3.6. Die Stabilität des Systems.- § 4. Anwendungen der finiten Fouriertransformation.- 4.1. Die Schnelle Fouriertransformation.- 4.2. Die reelle finite Fouriertransformation.- 4.3. Die Hauptachsentransformation von Toeplitzmatrizen.- 4.4. Schaltungen mit linearer Phase.- § 5. Interpolation und Abtastung.- 5.1. Bezeichnungen.- 5.2. Der ideale Abtaster.- 5.3. Das finite Abtasttheorem.- 5.4. Die frequenzbegrenzte Interpolationsfunktion.- 5.5. Zahlenbeispiel.- 5.6. Zeitkontinuierliche Interpolation.- 5.7. Abtastung einer zeitkontinuierlichen Funktion.- § 6. Analyse und Synthese zeitdiskreter Systeme.- 6.1. Das Analyseverfahren.- 6.2. Das transponierte System.- § 7. Der Tangensfrequenzbereich.- 7.1. Die zyklischen Differenzenmatrizen.- 7.2. Die Systemfunktion imTangensfrequenzbereich.- 7.3. Der Zusammenhang zwischen der Z-Systemfunktion und der Systemfunktion im Tangensfrequenzbereich.- 7.4. Angenäherte Berechnung der Impulsantwort eines zeitkontinuierlichen Systems.- 7.5. Entwurf eines zeitdiskreten Systems aus einem gegebenen Toleranzschema.- § 8. Streifen-Dreiecksmatrizen.- 8.1. Die Dreiecks-Differenzenmatrizen.- 8.2. Die Differenzenform der Differenzengleichung.- 8.3. Die Lösung der Differenzengleichung.- 8.4. Der Austausch der Anfangswerte.- 8.5. Beispiel: Die Differenzengleichung der Fibonaccischen Zahlen.- § 9. Die Operatorenrechnung.- 9.1. Die Heavisidesche Operatorenrechnung und ihre exakten Begründungen.- 9.2. Lösung der Differentialgleichung (2) mit der finiten Systemtheorie.- 9.3. Die finite Operatorenrechnung.- § 10. Die Hilberttransformation.- 10.1. Der zeitdiskrete zeitinvariante Hilberttransformator.- 10.2. Die Hilbertmatrix für ungerade N.- 10.3. Die Hilbertmatrix für gerade N.- 10.4. Zahlenbeispiel.- 10.5. Der zeitdiskrete zeitvariante Hilberttransformator.- 10.6. Die infinite Hilberttransformation.- Anhang 1: Definitionen und Rechenregeln der finiten Systemtheorie.- I. Vektoren und Matrizen mit zyklischen Indexen.- 1. Vektoren mit zyklischem Index.- 2. Die zyklische Matrix.- 3. Die Hauptachsentransformation der zyklischen Matrix.- 4. Die Z-Transformationsmatrix (Laplacematrix).- 5. Die Fouriermatrix.- 6. Die Diskrete Fouriertransformation.- 7. Zusammenhang zwischen finiter und infiniter Systemtheorie.- 7.1. Die endliche Fourierreihe.- 7.2. Die unendliche Fourierreihe.- 7.3. Das Fourierintegral und das Laplaceintegral.- 7.4. Die finite und die infinite Z-Transformation.- 8. Die Schnelle Fouriertransformation.- 9. Rechenregeln für zyklische Matrizen.- 10. Die zyklische Faltung.- 11. Die zyklischeEntfaltung.- 12. Die zyklischen Differenzenmatrizen.- 13. Polynomentwicklung einer zyklischen Matrix.- 14. Faktorisierung einer zyklischen Matrix.- 15. Partialbruchzerlegung der Inversen einer zyklischen Matrix.- 16. Die Inverse einer zyklischen Matrix.- II. Streifen-Dreiecksmatrizen.- 17. Die Dreiecksmatrix mit Streifenstruktur.- 18. Rechenregeln für Streifendreiecksmatrizen.- 19. Dreiecksfaltung.- 20. Dreiecksentfaltung.- 21. Polynomentwicklung einer Streifen-Dreiecksmatrix.- 22. Faktorisierung einer Streifen-Dreiecksmatrix.- 23. Partialbruchentwicklung der Inversen einer Streifen-Dreiecksmatrix.- 24. Die Inverse einer Streifen-Dreiecksmatrix.- 25. Die Dreiecks-Differenzenmatrizen.- 26. Faktorisierung eines Differenzenpolynoms.- 27. Partialbruchzerlegung der Inversen eines Differenzpolynoms.- 28. Die Inverse eines Differenzenpolynoms.- 29. Summierung einer Potenzfolge.- Anhang 2: Beweise.- 1. Beweis der Formeln (A112) und (A113).- 2. Beweis der Formel (A118).- 3. Beweis der Strukturregel der Pascalmatrix Gl. (7.20).- Literatur.


Best Sellers


Product Details
  • ISBN-13: 9783519061069
  • Publisher: Springer Fachmedien Wiesbaden
  • Publisher Imprint: Vieweg+teubner Verlag
  • Edition: Softcover Reprint of the Origi ed.
  • Language: German
  • Returnable: N
  • Series Title: Teubner Studienbücher Technik
  • Weight: 199 gr
  • ISBN-10: 3519061066
  • Publisher Date: 01 Sep 1976
  • Binding: Paperback
  • Height: 203 mm
  • No of Pages: 146
  • Returnable: Y
  • Spine Width: 11 mm
  • Width: 127 mm


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Finite Systemtheorie: (Teubner Studienbücher Technik)
Springer Fachmedien Wiesbaden -
Finite Systemtheorie: (Teubner Studienbücher Technik)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Finite Systemtheorie: (Teubner Studienbücher Technik)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA