Home > Mathematics and Science Textbooks > Mathematics > Calculus and mathematical analysis > Finite Volumes for Complex Applications X—Volume 1, Elliptic and Parabolic Problems: FVCA10, Strasbourg, France, October 30, 2023–November 03, 2023, Invited Contributions(432 Springer Proceedings in Mathematics & Statistics)
37%
Finite Volumes for Complex Applications X—Volume 1, Elliptic and Parabolic Problems: FVCA10, Strasbourg, France, October 30, 2023–November 03, 2023, Invited Contributions(432 Springer Proceedings in Mathematics & Statistics)

Finite Volumes for Complex Applications X—Volume 1, Elliptic and Parabolic Problems: FVCA10, Strasbourg, France, October 30, 2023–November 03, 2023, Invited Contributions(432 Springer Proceedings in Mathematics & Statistics)

          
5
4
3
2
1

Available


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

This volume comprises the first part of the proceedings of the 10th International Conference on Finite Volumes for Complex Applications, FVCA, held in Strasbourg, France, during October 30 to November 3, 2023. The Finite Volume method, and several of its variants, is a spatial discretization technique for partial differential equations based on the fundamental physical principle of conservation. Recent decades have brought significant success in the theoretical understanding of the method. Many finite volume methods are also built to preserve some properties of the continuous equations, including maximum principles, dissipativity, monotone decay of the free energy, asymptotic stability, or stationary solutions. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications. In recent years, the efficient implementation of these methods in numerical software packages, more specifically to be used in supercomputers, has drawn some attention.   This volume contains all invited papers, as well as the contributed papers focusing on finite volume schemes for elliptic and parabolic problems. They include structure-preserving schemes, convergence proofs, and error estimates for problems governed by elliptic and parabolic partial differential equations. The second volume is focused on finite volume methods for hyperbolic and related problems, such as methods compatible with the low Mach number limit or able to exactly preserve steady solutions, the development and analysis of high order methods, or the discretization of kinetic equations.

Table of Contents:
Invited papers, R. Abgrall, A personal discussion on conservation, and how to formulate it.- W. Boscheri, C. Birke and C. Klingenberg, A high order semi-implicit scheme for ideal magnetohydrodynamics.- A. Artoni, P. F. Antonietti, R. Corradi, I. Mazzieri, N. Parolini, D. Rocchi, P. Schito and Francesco F. Semeraro, AeroSPEED: a high order acoustic solver for aeroacoustic applications.- C. Cancès, M. Herda and A. Massimini, Finite volumes for a generalized Poisson-Nernst-Planck system with crossdiffusion and size exclusion.- X. D. Sánchez and J. Ryan, Magic SIAC Toolbox: A Codebase of Effective, Efficient, and Flexible Filters.- C. Helzel and E. Chudzik, A Review of Cartesian Grid Active Flux Methods for Hyperbolic Conservation Laws.- C. Rohde, Moving-Mesh Finite-Volume Methods for Hyperbolic Interface Dynamics.- M. Peszynska, Mixed dimensional modeling with overlapping continua on Cartesian grids for complex applications.- Contributed papers: Pierre-Loïc Bacq, Antoine Gerschenfeldand Michael Ndjinga, PolyMAC: staggered finite volume methods on general meshes for incompressible Navier-Stokes problems.- C. Bauzet, F. Nabet, K. Schmitz and A. Zimmermann, Finite Volume Approximations for Non-Linear Parabolic Problems with Stochastic Forcing.- F. Benkhaldoun and Abdallah Bradji, A new analysis for a super-convergence result in the divergence norm for Lowest Order Raviart-Thomas Mixed Finite Elements combined with the Crank-Nicolson method applied to one dimensional parabolic equations.- Benkhaldoun, Fayssal, Bradji, Abdallah, An L∞(H1)–error estimate for Gradient Schemes applied to time fractional diffusion equations.- Jerome Bonelle and Thomas Fonty, Compatible Discrete Operator schemes for solidification and segregation phenomena.- M. Boutilier, K. Brenner and V. Dolean, Trefftz approximation space for Poisson equation in perforated domains.- C. Cancès, J. Cauvin-Vila, C. Chainais-Hillairet and V. Ehrlacher, Structure Preserving Finite Volume Approximation of Cross-Diffusion Systems Coupled by a Free Interface.- C. Chainais-Hillairet and M. Alfaro, Finite volume scheme for the diffusive field-road model: study of the long time behaviour.- C. Chainais-Hillairet, R. Eymard and J. Fuhrmann, An approximate two-point Dirichlet flux for quasilinear convection diffusion equations.- Z. Chehade and Y. Coudière, The Two-Point Finite Volume Scheme for the Microscopic Bidomain Model of Electrocardiology.- E. Chénier, C. Le Potier, Erell Jamelot and Andrew Peitavy, Improved Crouzeix-Raviart scheme for the Stokes problem.- S. Clément, F. Lemarié and E. Blayo, Towards a finite volume discretization of the atmospheric surface layer consistent with physical theory.- J. Droniou, M. Laaziri and R. Masson, Thermodynamically Consistent discretisation of a Thermo-HydroMechanical model.- E. Eggenweiler, J. Nickl and I. Rybak, Justification of Generalized Interface Conditions for Stokes-Darcy Problems.- J. Fuhrmann, B. Gaudeul and C. Keller, Two entropic finite volume schemes for a Nernst–Planck–Poisson system with ion volume constraints.- M. Gander, J. Hennicker, R. Masson and T. Vanzan, Dimensional reduction by Fourier analysis of a Stokes-Darcy fracture model.- M. Heida, Finite Volumes for Simulation of Large Molecules.- M. M. Knodel, Arne Nägel, Eva Herrmann and Gabriel Wittum, PDE models of virus replication merging 2D manifold and 3D volume effects evaluated at realistic reconstructed cell geometries.- S. Krell and J. Moatti, Structure-preserving schemes for drift-diffusion systems on general meshes: DDFV vs HFV.- S. Matera, D. Runge and C. Merdon, Reduced Basis Approach for convection-diffusion equations with non-linear boundary reaction conditions.- J. Moatti, A skeletal high-order structure preserving scheme for advection-diffusion equations.- G. Narváez, M. Ferrand, T. Fonty and S. Benhamadouche, Automatic solid reconstructionfrom 3-D points set for flow simulation via an immersed boundary method.- L. Ruan and I. Rybak, Stokes–Brinkman–Darcy Models for Coupled Free-Flow and Porous-Medium Systems.- P. Strohbeck, C. Riethmüller, D. Göddeke and I. Rybak, Robust and Efficient Preconditioners for Stokes–Darcy Problems.- C. Thomas, S. Mazen and El-Houssaine Quenjel, A DDFV Scheme for Incompressible Two-Phase Flow Degenerate Problem in Porous Media.- Author Index.


Best Sellers


Product Details
  • ISBN-13: 9783031408632
  • Publisher: Springer International Publishing AG
  • Publisher Imprint: Springer International Publishing AG
  • Height: 235 mm
  • No of Pages: 396
  • Series Title: 432 Springer Proceedings in Mathematics & Statistics
  • Sub Title: FVCA10, Strasbourg, France, October 30, 2023–November 03, 2023, Invited Contributions
  • Width: 155 mm
  • ISBN-10: 3031408632
  • Publisher Date: 02 Oct 2023
  • Binding: Hardback
  • Language: English
  • Returnable: Y
  • Spine Width: 26 mm
  • Weight: 883 gr


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Finite Volumes for Complex Applications X—Volume 1, Elliptic and Parabolic Problems: FVCA10, Strasbourg, France, October 30, 2023–November 03, 2023, Invited Contributions(432 Springer Proceedings in Mathematics & Statistics)
Springer International Publishing AG -
Finite Volumes for Complex Applications X—Volume 1, Elliptic and Parabolic Problems: FVCA10, Strasbourg, France, October 30, 2023–November 03, 2023, Invited Contributions(432 Springer Proceedings in Mathematics & Statistics)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Finite Volumes for Complex Applications X—Volume 1, Elliptic and Parabolic Problems: FVCA10, Strasbourg, France, October 30, 2023–November 03, 2023, Invited Contributions(432 Springer Proceedings in Mathematics & Statistics)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA