close menu
Bookswagon-24x7 online bookstore
close menu
My Account
Home > Mathematics and Science Textbooks > Science: general issues > Forest-Based Algorithms in Natural Language Processing.: (English)
Forest-Based Algorithms in Natural Language Processing.: (English)

Forest-Based Algorithms in Natural Language Processing.: (English)

          
5
4
3
2
1

Out of Stock


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Notify me when this book is in stock
Add to Wishlist

About the Book

Many problems in Natural Language Processing (NLP) involves an efficient search for the best derivation over (exponentially) many candidates. For example, a parser aims to find the best syntactic tree for a given sentence among all derivations under a grammar, and a machine translation (MT) decoder explores the space of all possible translations of the source-language sentence. In these cases, the concept of packed forest provides a compact representation of huge search spaces by sharing common sub-derivations, where efficient algorithms based on Dynamic Programming (DP) are possible. Building upon the hypergraph formulation of forests and well-known 1-best DP algorithms, this dissertation develops fast and exact k-best DP algorithms on forests, which are orders of magnitudes faster than previously used methods on state-of-the-art parsers. We also show empirically how the improved output of our algorithms has the potential to improve results from parse reranking systems and other applications. We then extend these algorithms to approximate search when the forests are too big for exact inference. We discuss two particular instances of this new method, forest rescoring for MT decoding, and forest reranking for parsing. In both cases, our methods perform orders of magnitudes faster than conventional approaches. In the latter, faster search also leads to better learning, where our approximate decoding makes whole-Treebank discriminative training practical and results in an accuracy better than any previously reported systems trained on the Treebank. Finally, we apply the above materials to the problem of syntax-based translation and propose a new paradigm, forest-based translation. This scheme translates a packed forest of the source sentence into a target sentence, rather than just using 1-best or k -best parses as in usual practice. By considering exponentially many alternatives, it alleviates the propagation of parsing errors into translation, yet only comes with fractional overhead in running time. We also push this direction further to extract translation rules from packed forests. The combined results of forest-based decoding and rule extraction show significant improvements in translation quality with large-scale experiments, and consistently outperform the hierarchical system Hiero, one of the best performing systems to date.


Best Sellers



Product Details
  • ISBN-13: 9781243589637
  • Publisher: Proquest, Umi Dissertation Publishing
  • Publisher Imprint: Proquest, Umi Dissertation Publishing
  • Height: 246 mm
  • No of Pages: 122
  • Series Title: English
  • Weight: 231 gr
  • ISBN-10: 1243589639
  • Publisher Date: 01 Sep 2011
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Spine Width: 7 mm
  • Width: 189 mm


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Forest-Based Algorithms in Natural Language Processing.: (English)
Proquest, Umi Dissertation Publishing -
Forest-Based Algorithms in Natural Language Processing.: (English)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Forest-Based Algorithms in Natural Language Processing.: (English)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA