Home > Mathematics and Science Textbooks > Mathematics > Calculus and mathematical analysis > Fourier Analysis and Approximation: One Dimensional Theory(Lehrbucher und Monographien aus dem Gebiete der Exakten Wissenschaften / Mathematische Reihe)
19%
Fourier Analysis and Approximation: One Dimensional Theory(Lehrbucher und Monographien aus dem Gebiete der Exakten Wissenschaften / Mathematische Reihe)

Fourier Analysis and Approximation: One Dimensional Theory(Lehrbucher und Monographien aus dem Gebiete der Exakten Wissenschaften / Mathematische Reihe)

          
5
4
3
2
1

Out of Stock


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Notify me when this book is in stock
Add to Wishlist

About the Book

At the international conference on 'Harmonic Analysis and Integral Transforms', conducted by one of the authors at the Mathematical Research Institute in Oberwolfach (Black Forest) in August 1965, it was felt that there was a real need for a book on Fourier analysis stressing (i) parallel treatment of Fourier series and Fourier trans- forms from a transform point of view, (ii) treatment of Fourier transforms in LP(lRn)_ space not only for p = 1 and p = 2, (iii) classical solution of partial differential equations with completely rigorous proofs, (iv) theory of singular integrals of convolu- tion type, (v) applications to approximation theory including saturation theory, (vi) multiplier theory, (vii) Hilbert transforms, Riesz fractional integrals, Bessel potentials, (viii) Fourier transform methods on locally compact groups. This study aims to consider these aspects, presenting a systematic treatment of Fourier analysis on the circle as well as on the infinite line, and of those areas of approximation theory which are in some way or other related thereto. A second volume is in preparation which goes beyond the one-dimensional theory presented here to cover the subject for functions of several variables. Approximately a half of this first volume deals with the theories of Fourier series and of Fourier integrals from a transform point of view.

Table of Contents:
0 Preliminaries.- 0 Preliminaries.- 0.1 Fundamentals on Lebesgue Integration.- 0.2 Convolutions on the Line Group.- 0.3 Further Sets of Functions and Sequences.- 0.4 Periodic Functions and Their Convolution.- 0.5 Functions of Bounded Variation on the Line Group.- 0.6 The Class BV2?.- 0.7 Normed Linear Spaces, Bounded Linear Operators.- 0.8 Bounded Linear Functional, Riesz Representation Theorems.- 0.9 References.- I Approximation by Singular Integrals.- 1 Singular Integrals of Periodic Functions.- 1.0 Introduction.- 1.1 Norm-Convergence and-Derivatives.- 1.1.1 Norm-Convergence.- 1.1.2 Derivatives.- 1.2 Summation of Fourier Series.- 1.2.1 Definitions.- 1.2.2 Dirichlet and Fejer Kernel.- 1.2.3 Weierstrass Approximation Theorem.- 1.2.4 Summability of Fourier Series.- 1.2.5 Row-Finite ?-Factors.- 1.2.6 Summability of Conjugate Series.- 1.2.7 Fourier-Stieltjes Series.- 1.3 Test Sets for Norm-Convergence.- 1.3.1 Norms of Some Convolution Operators.- 1.3.2 Some Applications of the Theorem of Banaeh-Steinhaus.- 1.3.3 Positive Kernels.- 1.4 Pointwise Convergence.- 1.5 Order of Approximation for Positive Singular Integrals.- 1.5.1 Modulus of Continuity and Lipschitz Classes.- 1.5.2 Direct Approximation Theorems.- 1.5.3 Method of Test Functions.- 1.5.4 Asymptotic Properties.- 1.6 Further Direct Approximation Theorems, Nikolski? Constants.- 1.6.1 Singular Integral of Fejer-Korovkin.- 1.6.2 Further Direct Approximation Theorems.- 1.6.3 Nikolski? Constants.- 1.7 Simple Inverse Approximation Theorems.- 1.8 Notes and Remarks.- 2 Theorems of Jackson and Bernstein for Polynomials of Best Approximation and for Singular Integrals.- 2.0 Introduction.- 2.1 Polynomials of Best Approximation.- 2.2 Theorems of Jackson.- 2.3 Theorems of Bernstein.- 2.4 Various Applications.- 2.5 1.- 4.2.1 The Case p = 2.- 4.2.2 The Case p ? 2.- 4.3 Finite Fourier-Stieltjes Transforms.- 4.3.1 Fundamental Properties.- 4.3.2 Inversion Theory.- 4.3.3 Fourier-Stieltjes Transforms of Derivatives.- 4.4 Notes and Remarks.- 5 Fourier Transforms Associated with the Line Group.- 5.0 Introduction.- 5.1 L1-Theory.- 5.1.1 Fundamental Properties.- 5.1.2 Inversion Theory.- 5.1.3 Fourier Transforms of Derivatives.- 5.1.4 Derivatives of Fourier Transforms, Moments of Positive Functions Peano and Riemann Derivatives.- 5.1.5 Poisson Summation Formula.- 5.2 Lp-Theory, 1 < p ? 2.- 5.2.1 The Case p = 2.- 5.2.2 The Case 1 2.- 5.2.3 Fundamental Properties.- 5.2.4 Summation of the Fourier Inversion Integral.- 5.2.5 Fourier Transforms of Derivatives.- 5.2.6 Theorem of Plancherel.- 5.3 Fourier-Stieltjes Transforms.- 5.3.1 Fundamental Properties.- 5.3.2 Inversion Theory.- 5.3.3 Fourier-Stieltjes Transforms of Derivatives.- 5.4 Notes and Remarks.- 6 Representation Theorems.- 6.0 Introduction.- 6.1 Necessary and Sufficient Conditions.- 6.1.1 Representation of Sequences as Finite Fourier or Fourier-Stieltjes Transforms.- 6.1.2 Representation of Functions as Fourier or Fourier-Stieltjes Transforms.- 6.2 Theorems of Bochner.- 6.3 Sufficient Conditions.- 6.3.1 Quasi-Convexity.- 6.3.2 Representation as L1/2? Transform.- 6.3.3 Representation as L1-Transform.- 6.3.4 A Reduction Theorem.- 6.4 Applications to Singular Integrals.- 6.4.1 General Singular Integral of Weierstrass.- 6.4.2 Typical Means.- 6.5 Multipliers.- 6.5.1 Multipliers of Classes of Periodic Functions.- 6.5.2 Multipliers on LP.- 6.6 Notes and Remarks.- 7 Fourier Transform Methods and Second-Order Partial Differential Equations.- 7.0 Introduction.- 7.1 Finite Fourier Transform Method.- 7.1.1 Solution of Heat Conduction Problems.- 7.1.2 Dirichlet's and Neumann's Problem for the Unit Disc.- 7.1.3 Vibrating String Problems.- 7.2 Fourier Transform Method in L1.- 7.2.1 Diffusion on an Infinite Rod.- 7.2.2 Dirichlet's Problem for the Half-Plane.- 7.2.3 Motion of an Infinite String.- 7.3 Notes and Remarks.- III Hilbert Transforms.- 8 Hilbert Transforms on the Real Line.- 8.0 Introduction.- 8.1 Existence of the Transform.- 8.1.1 Existence Almost Everywhere.- 8.1.2 Existence in L2-Norm.- 8.1.3 Existence in Lp-Norm, 1 ?.- 8.2 Hilbert Formulae, Conjugates of Singular Integrals, Iterated Hilbert Transforms.- 8.2.1 Hilbert Formulae.- 8.2.2 Conjugates of Singular Integrals: 1 ?.- 8.2.3 Conjugates of Singular Integrals: p = 1.- 8.2.4 Iterated Hilbert Transforms.- 8.3 Fourier Transforms of Hilbert Transforms.- 8.3.1 Signum Rule.- 8.3.2 Summation of Allied Integrals.- 8.3.3 Fourier.- 8.3.4 Norm-Convergence of the Fourier Inversion Integral.- 8.4 Notes and Remarks.- 9 Hilbert Transforms of Periodic Functions.- 9.0 Introduction.- 9.1 Existence and Basic Properties.- 9.1.1 Existence.- 9.1.2 Hilbert Formulae.- 9.2 Conjugates of Singular Integrals.- 9.2.1 The Case 1 ?.- 9.2.2 Convergence in C2? and L1/2?.- 9.3 Fourier Transforms of Hilbert Transforms.- 9.3.1 Conjugate Fourier Series.- 9.3.2 Fourier Transforms of Derivatives of Conjugate Functions, the Classes (W~)xr2?'(V~)rx2?.- 9.3.3 Norm-Convergence of Fourier Series.- 9.4 Notes and Remarks.- IV Characterization of Certain Function Classes 355.- 10 Characterization in the Integral Case.- 10.0 Introduction.- 10.1 Generalized Derivatives, Characterization of the Classes Wrx2?.- 10.1.1 Riemann Derivatives in X2?-Norm.- 10.1.2 Strong Peano Derivatives.- 10.1.3 Strong and Weak Derivatives, Weak Generalized Derivatives.- 10.2 Characterization of the Classes Vr2?.- 10.3 Characterization of the Classes (V~)rx2?.- 10.4 Relative Completion.- 10.5 Generalized Derivatives in Lp-Norm and Characterizations for 1 ? p ?2.- 10.6 Generalized Derivatives in X(R)-Norm and Characterizations of the Classes Wrx(R) and Vrx(R).- 10.7 Notes and Remarks.- 11 Characterization in the Fractional Case.- 11.0 Introduction.- 11.1 Integrals of Fractional Order.- 11.1.1 Integral of Riemann-Liouville.- 11.1.2 Integral of M. Riesz.- 11.2 Characterizations of the Classes W[LP; |?|?], V[LP; |?|?], 1 ? p ? 2.- 11.2.1 Derivatives of Fractional Order.- 11.2.2 Strong Riesz Derivatives of Higher Order, the Classes V[LP; |?|? ].- 11.3 The Operators R?{?} on Lp 1 ? p ? 2.- 11.3.1 Characterizations.- 11.3.2 Theorems of Bernstein-Titchmarsh and H. Weyl.- 11.4 The Operators R?(?} on 2?.- 11.5 Integral Representations, Fractional Derivatives of Periodic Functions.- 11.6 Notes and Remarks.- V Saturation Theory.- 12 Saturation for Singular Integrals on X2? and Lp, 1 ? p ? 2 433.- 12.0 Introduction.- 12.1 Saturation for Periodic Singular Integrals, Inverse Theorems.- 12.2 Favard Classes.- 12.2.1 Positive Kernels.- 12.2.2 Uniformly Bounded Multipliers.- 12.2.3 Functional Equations.- 12.3 Saturation in Lp, 1 ? p ? 2.- 12.3.1 Saturation Property.- 12.3.2 Characterizations of Favard Classes: p = 1.- 12.3.3 Characterizations of Favard Classes: 1 < p? 2.- 12.4 Applications to Various Singular Integrals.- 12.4.1 Singular Integral of Fejer.- 12.4.2 Generalized Singular Integral of Picard.- 12.4.3 General Singular Integral of Weierstrass.- 12.4.4 Singular Integral of Bochner-Riesz.- 12.4.5 Riesz Means.- 12.5 Saturation of Higher Order.- 12.5.1 Singular Integrals on the Real Line.- 12.5.2 Periodic Singular Integrals.- 12.6 Notes and Remarks.- 13 Saturation on X(R).- 13.0 Introduction.- 13.1 Saturation of D?(f;x;t) in X(R), Dual Methods.- 13.2 Applications to Approximation in Lp, 2 ?.- 13.2.1 Differences.- 13.2.2 Singular Integrals Satisfying (12.3.5).- 13.2.3 Strong Riesz Derivatives.- 13.2.4 The Operators R?{?}.- 13.2.5 Riesz and Fejer Means.- 13.3 Comparison Theorems.- 13.3.1 Global Divisibility.- 13.3.2 Local Divisibility.- 13.3.3 Special Comparison Theorems with no Divisibility Hypothesis.- 13.3.4 Applications to Periodic Continuous Functions.- 13.4 Saturation on Banach Spaces.- 13.4.1 Strong Approximation Processes.- 13.4.2 Semi-Groups of Operators.- 13.5 Notes and Remarks.- List of Symbols.- Tables of Fourier and Hilbert Transforms.


Best Sellers


Product Details
  • ISBN-13: 9783764305208
  • Publisher: Birkhauser Verlag AG
  • Publisher Imprint: Birkhauser Verlag AG
  • Language: English
  • Returnable: N
  • Sub Title: One Dimensional Theory
  • ISBN-10: 3764305207
  • Publisher Date: 01 Jan 1971
  • Binding: Hardback
  • No of Pages: 554
  • Series Title: Lehrbucher und Monographien aus dem Gebiete der Exakten Wissenschaften / Mathematische Reihe
  • Weight: 1145 gr


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Fourier Analysis and Approximation: One Dimensional Theory(Lehrbucher und Monographien aus dem Gebiete der Exakten Wissenschaften / Mathematische Reihe)
Birkhauser Verlag AG -
Fourier Analysis and Approximation: One Dimensional Theory(Lehrbucher und Monographien aus dem Gebiete der Exakten Wissenschaften / Mathematische Reihe)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Fourier Analysis and Approximation: One Dimensional Theory(Lehrbucher und Monographien aus dem Gebiete der Exakten Wissenschaften / Mathematische Reihe)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA