close menu
Bookswagon-24x7 online bookstore
close menu
My Account
Home > Computing and Information Technology > Computer science > Computer architecture and logic design > Parallel processing > Functional and Concurrent Programming: Core Concepts and Features
Functional and Concurrent Programming: Core Concepts and Features

Functional and Concurrent Programming: Core Concepts and Features

          
5
4
3
2
1

Out of Stock


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Notify me when this book is in stock
Add to Wishlist

About the Book

Leverage Modern Language Constructs to Write High-Quality Code Faster

The functional and concurrent programming language features supported by modern languages can be challenging, even for experienced developers. These features may appear intimidating to OOP programmers because of a misunderstanding of how they work. Programmers first need to become familiar with the abstract concepts that underlie these powerful features.

In Functional and Concurrent Programming, Michel Charpentier introduces a core set of programming language constructs that will help you be productive in a variety of programming languages—now and in the future. Charpentier illustrates key concepts with numerous small, focused code examples, written in Scala, and with case studies that provide a thorough grounding in functional and concurrent programming skills. These skills will carry from language to language—including the most recent incarnations of Java. Using these features will enable developers and programmers to write high-quality code that is easier to understand, debug, optimize, and evolve.

Key topics covered include:

  • Recursion and tail recursion
  • Pattern matching and algebraic datatypes
  • Persistent structures and immutability
  • Higher-order functions and lambda expressions
  • Lazy evaluation and streams
  • Threads and thread pools
  • Atomicity and locking
  • Synchronization and thread-safe objects
  • Lock-free, non-blocking patterns
  • Futures, promises, and functional-concurrent programming


As a bonus, the book includes a discussion of common typing strategies used in modern programming languages, including type inference, subtyping, polymorphism, type classes, type bounds, and type variance.

Most of the code examples are in Scala, which includes many of the standard features of functional and concurrent programming; however, no prior knowledge of Scala is assumed. You should be familiar with concepts such as classes, methods, objects, types, variables, loops, and conditionals and have enough programming experience to not be distracted by simple matters of syntax.



Table of Contents:

Foreword by Cay Horstmann   xxiii

Preface    xxv

Acknowledgments    xxxv

About the Author    xxxvii

 

Part I. Functional Programming    1

Chapter 1: Concepts of Functional Programming    3

     1.1 What Is Functional Programming?     3

     1.2 Functions    4

     1.3 From Functions to Functional Programming Concepts    6

     1.4 Summary    7

 

Chapter 2: Functions in Programming Languages     9

     2.1 Defining Functions     9

     2.2 Composing Functions     10

     2.3 Functions Defined as Methods     12

     2.4 Operators Defined as Methods     12

     2.5 Extension Methods   13

     2.6 Local Functions     14

     2.7 Repeated Arguments     15

     2.8 Optional Arguments     16

     2.9 Named Arguments     16

     2.10 Type Parameters     17

     2.11 Summary     19

 

Chapter 3: Immutability     21

     3.1 Pure and Impure Functions     21

     3.2 Actions     23

     3.3 Expressions Versus Statements     25

     3.4 Functional Variables     26

     3.5 Immutable Objects     28

     3.6 Implementation of Mutable State     29

     3.7 Functional Lists     31

     3.8 Hybrid Designs     32

     3.9 Updating Collections of Mutable/Immutable Objects     35

     3.10 Summary     36

 

Chapter 4: Case Study: Active–Passive Sets     39

     4.1 Object-Oriented Design     39

     4.2 Functional Values     41

     4.3 Functional Objects     43

     4.4 Summary     44

 

Chapter 5: Pattern Matching and Algebraic Data Types     47

     5.1 Functional Switch     47

     5.2 Tuples     48

     5.3 Options     50

     5.4 Revisiting Functional Lists     51

     5.5 Trees     53

     5.6 Illustration: List Zipper     56

     5.7 Extractors     59

     5.8 Summary     60

 

Chapter 6: Recursive Programming     63

     6.1 The Need for Recursion     63

     6.2 Recursive Algorithms     65

     6.3 Key Principles of Recursive Algorithms     67

     6.4 Recursive Structures     69

     6.5 Tail Recursion     71

     6.6 Examples of Tail Recursive Functions     73

     6.7 Summary     77

 

Chapter 7: Recursion on Lists     79

     7.1 Recursive Algorithms as Equalities     79

     7.2 Traversing Lists     80

     7.3 Returning Lists     82

     7.4 Building Lists from the Execution Stack     84

     7.5 Recursion on Multiple/Nested Lists     85

     7.6 Recursion on Sublists Other Than the Tail     88

     7.7 Building Lists in Reverse Order     90

     7.8 Illustration: Sorting     92

     7.9 Building Lists Efficiently     94

     7.10 Summary     96

 

Chapter 8: Case Study: Binary Search Trees     99

     8.1 Binary Search Trees     99

     8.2 Sets of Integers as Binary Search Trees     100

     8.3 Implementation Without Rebalancing     102

     8.4 Self-Balancing Trees     107

     8.5 Summary     113

 

Chapter 9: Higher-Order Functions     115

     9.1 Functions as Values     115

     9.2 Currying     118

     9.3 Function Literals     120

     9.4 Functions Versus Methods     123

     9.5 Single-Abstract-Method Interfaces     124

     9.6 Partial Application     125

     9.7 Closures     130

     9.8 Inversion of Control     133

     9.9 Summary     133

 

Chapter 10: Standard Higher-Order Functions     137

     10.1 Functions with Predicate Arguments     137

     10.2 map and foreach     140

     10.3 atMap     141

     10.4 fold and reduce     146

     10.5 iterate, tabulate, and unfold     148

     10.6 sortWith, sortBy, maxBy, and minBy     149

     10.7 groupBy and groupMap     150

     10.8 Implementing Standard Higher-Order Functions     152

     10.9 foreach, map, atMap, and for-Comprehensions     152

     10.10 Summary     155

 

Chapter 11: Case Study: File Systems as Trees     157

     11.1 Design Overview     157

     11.2 A Node-Searching Helper Function     158

     11.3 String Representation     158

     11.4 Building Trees     160

     11.5 Querying     164

     11.6 Navigation     168

     11.7 Tree Zipper     169

     11.8 Summary     172

 

Chapter 12: Lazy Evaluation     173

     12.1 Delayed Evaluation of Arguments     173

     12.2 By-Name Arguments     174

     12.3 Control Abstraction     176

     12.4 Internal Domain-Specifc Languages     179

     12.5 Streams as Lazily Evaluated Lists     180

     12.6 Streams as Pipelines     182

     12.7 Streams as Infinite Data Structures     184

     12.8 Iterators     184

     12.9 Lists, Streams, Iterators, and Views     187

     12.10 Delayed Evaluation of Fields and Local Variables     190

     12.11 Illustration: Subset-Sum     191

     12.12 Summary     193

 

Chapter 13: Handling Failures     195

     13.1 Exceptions and Special Values     195

     13.2 Using Option     197

     13.3 Using Try     198

     13.4 Using Either     199

     13.5 Higher-Order Functions and Pipelines     201

     13.6 Summary     204

 

Chapter 14: Case Study: Trampolines     205

     14.1 Tail-Call Optimization     205

     14.2 Trampolines for Tail-Calls     206

     14.3 Tail-Call Optimization in Java     207

     14.4 Dealing with Non-Tail-Calls     209

     14.5 Summary     213

 

A Brief Interlude     215

 

Chapter 15: Types (and Related Concepts)      217

     15.1 Typing Strategies     217

     15.2 Types as Sets     222

     15.3 Types as Services     223

     15.4 Abstract Data Types     224

     15.5 Type Inference     225

     15.6 Subtypes     229

     15.7 Polymorphism     232

     15.8 Type Variance     235

     15.9 Type Bounds     241

     15.10 Type Classes     245

     15.11 Summary     250

 

Part II. Concurrent Programming     253

Chapter 16: Concepts of Concurrent Programming     255

     16.1 Non-sequential Programs     255

     16.2 Concurrent Programming Concepts     258

     16.3 Summary     259

 

Chapter 17: Threads and Nondeterminism     261

     17.1 Threads of Execution     261

     17.2 Creating Threads Using Lambda Expressions     263

     17.3 Nondeterministic Behavior of Multithreaded Programs     263

     17.4 Thread Termination     264

     17.5 Testing and Debugging Multithreaded Programs     266

     17.6 Summary     268

 

Chapter 18: Atomicity and Locking     271

     18.1 Atomicity     271

     18.2 Non-atomic Operations     273

     18.3 Atomic Operations and Non-atomic Composition     274

     18.4 Locking     278

     18.5 Intrinsic Locks     279

     18.6 Choosing Locking Targets     281

     18.7 Summary     283

 

Chapter 19: Thread-Safe Objects     285

     19.1 Immutable Objects     285

     19.2 Encapsulating Synchronization Policies     286

     19.3 Avoiding Reference Escape     288

     19.4 Public and Private Locks     289

     19.5 Leveraging Immutable Types     290

     19.6 Thread-Safety     293

     19.7 Summary     295

 

Chapter 20: Case Study: Thread-Safe Queue     297

     20.1 Queues as Pairs of Lists     297

     20.2 Single Public Lock Implementation     298

     20.3 Single Private Lock Implementation     301

     20.4 Applying Lock Splitting     303

     20.5 Summary     305

 

Chapter 21: Thread Pools     307

     21.1 Fire-and-Forget Asynchronous Execution     307

     21.2 Illustration: Parallel Server     309

     21.3 Different Types of Thread Pools     312

     21.4 Parallel Collections     314

     21.5 Summary     318

 

Chapter 22: Synchronization     321

     22.1 Illustration of the Need for Synchronization     321

     22.2 Synchronizers     324

     22.3 Deadlocks     325

     22.4 Debugging Deadlocks with Thread Dumps     328

     22.5 The Java Memory Model     330

     22.6 Summary     335

 

Chapter 23: Common Synchronizers     337

     23.1 Locks     337

     23.2 Latches and Barriers     339

     23.3 Semaphores     341

     23.4 Conditions     343

     23.5 Blocking Queues     349

     23.6 Summary     353

 

Chapter 24: Case Study: Parallel Execution     355

     24.1 Sequential Reference Implementation     355

     24.2 One New Thread per Task     356

     24.3 Bounded Number of Threads     357

     24.4 Dedicated Thread Pool     359

     24.5 Shared Thread Pool     360

     24.6 Bounded Thread Pool     361

     24.7 Parallel Collections     362

     24.8 Asynchronous Task Submission Using Conditions     362

     24.9 Two-Semaphore Implementation     367

     24.10 Summary     368

 

Chapter 25: Futures and Promises     369

     25.1 Functional Tasks     369

     25.2 Futures as Synchronizers     371

     25.3 Timeouts, Failures, and Cancellation     374

     25.4 Future Variants     375

     25.5 Promises     375

     25.6 Illustration: Thread-Safe Caching     377

     25.7 Summary     379

 

Chapter 26: Functional-Concurrent Programming     381

     26.1 Correctness and Performance Issues with Blocking     381

     26.2 Callbacks     384

     26.3 Higher-Order Functions on Futures     385

     26.4 Function atMap on Futures     388

     26.5 Illustration: Parallel Server Revisited     390

     26.6 Functional-Concurrent Programming Patterns     393

     26.7 Summary     397

 

Chapter 27: Minimizing Thread Blocking     399

     27.1 Atomic Operations     399

     27.2 Lock-Free Data Structures     402

     27.3 Fork/Join Pools     405

     27.4 Asynchronous Programming     406

     27.5 Actors     407

     27.6 Reactive Streams     411

     27.7 Non-blocking Synchronization     412

     27.8 Summary     414

 

Chapter 28: Case Study: Parallel Strategies     417

     28.1 Problem Definition     417

     28.2 Sequential Implementation with Timeout     419

     28.3 Parallel Implementation Using invokeAny     420

     28.4 Parallel Implementation Using CompletionService     421

     28.5 Asynchronous Implementation with Scala Futures     422

     28.6 Asynchronous Implementation with CompletableFuture     426

     28.7 Caching Results from Strategies     427

     28.8 Summary     431

 

Appendix A. Features of Java and Kotlin     433

     A.1 Functions in Java and Kotlin     433

     A.2 Immutability     436

     A.3 Pattern Matching and Algebraic Data Types     437

     A.4 Recursive Programming     439

     A.5 Higher-Order Functions     440

     A.6 Lazy Evaluation     446

     A.7 Handling Failures     449

     A.8 Types     451

     A.9 Threads     453

     A.10 Atomicity and Locking     454

     A.11 Thread-Safe Objects     455

     A.12 Thread Pools     457

     A.13 Synchronization     459

     A.14 Futures and Functional-Concurrent Programming     460

     A.15 Minimizing Thread Blocking     461

 

Glossary     463

Index    465


Best Seller

| | See All


Product Details
  • ISBN-13: 9780137466634
  • Publisher: Pearson Education (US)
  • Publisher Imprint: Addison Wesley
  • Language: English
  • Sub Title: Core Concepts and Features
  • ISBN-10: 0137466633
  • Publisher Date: 08 Dec 2022
  • Binding: Digital download
  • No of Pages: 528


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Functional and Concurrent Programming: Core Concepts and Features
Pearson Education (US) -
Functional and Concurrent Programming: Core Concepts and Features
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Functional and Concurrent Programming: Core Concepts and Features

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    | | See All


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA