Home > Science, Technology & Agriculture > Mechanical engineering and materials > Functionalized Nanomaterials for Catalytic Application
14%
Functionalized Nanomaterials for Catalytic Application

Functionalized Nanomaterials for Catalytic Application

          
5
4
3
2
1

International Edition


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

This is the first handbook that provides an integrated approach for functionalized nanomaterials (FNMs) based catalytic materials. With the rapid development in nanotechnology, it is now possible to modulate the physical and chemical properties of nanomaterials with molecular recognition and catalytic functional applications. Such research efforts have resulted in a huge number of catalytic platforms for a broad range of analytes ranging from metal ions, small molecules, ionic liquid and nucleic acids down to proteins. Functionalized nanomaterials (FNMs) have important applications in the environmental, energy and healthcare sectors. Strategies for the synthesis of FNMs have contributed immensely to the textile, construction, cosmetics, biomedical and environmental industries among others. This book highlights the design of functionalized nanomaterials with respect to recent progress in the industrial arena and their respective applications. It presents an inclusive overview encapsulating FNMs and their applications to give the reader a systematic and coherent picture of nearly all relevant up-to-date advancements. Herein, functionalization techniques and processes are presented to enhance nanomaterials that can substantially affect the performance of procedures already in use and can deliver exciting consumer products to match the current lifestyle of modern society.

Table of Contents:
Preface xvii 1 Functionalized Nanomaterial (FNM)–Based Catalytic Materials for Water Resources 1 Sreevidya S., Kirtana Sankara Subramanian, Yokraj Katre, Ajaya Kumar Singh and Jai Singh 1.1 Introduction 4 1.2 Electrocatalysts as FNMs 7 1.3 Electro-Fenton/Hetero Electro-Fenton as FNMs 8 1.4 Hetero Photo-Fenton as FNMs 13 1.4.1 Heterogenous-Fentons-Based FNMs 14 1.4.2 Photo-Fentons-Based FNMs 14 1.5 Photocatalysts as FMNs 19 1.5.1 Carbon-Based FNMs as Photocatalysts 24 1.5.1.1 CNT-Based FNMs 24 1.5.1.2 Fullerene-Based FNMs 25 1.5.1.3 Graphene (G)/Graphene Oxide (GO)–Based FNMs 26 1.5.1.4 Graphene-Carbon Nitride/Metal or Metalloid Oxide–Based FNMs 27 1.5.1.5 Graphene-Carbon Nitride/QD-Based FNMs 28 1.5.2 Polymer Composite–Based FNMs as Photocatalyst 29 1.5.3 Metal/Metal Oxide–Based FNMs as Photocatalyst 29 1.6 Nanocatalyst Antimicrobials as FNMs 30 1.7 Conclusions and Future Perspectives 31 References 33 2 Functionalized Nanomaterial (FNM)–Based Catalytic Materials for Energy Industry 53 Amarpreet K. Bhatia, Shippi Dewangan, Ajaya K. Singh and Sónia. A.C. Carabineiro 2.1 Introduction 54 2.2 Different Types of Nanomaterials 55 2.2.1 Zero-Dimensional (0D) Nanostructures 55 2.2.2 One-Dimensional (1D) Nanostructures 56 2.2.3 Two-Dimensional (2D) Nanostructures 56 2.2.4 Three-Dimensional (3D) Nanostructures 56 2.3 Synthesis of Functionalized Nanomaterials 56 2.3.1 Chemical Methods 57 2.3.2 Ligand Exchange Process 58 2.3.3 Grafting of Synthetic Polymers 58 2.3.4 Miscellaneous Methods 58 2.4 Magnetic Nanoparticles 59 2.4.1 Synthesis of Magnetic Nanoparticles 59 2.4.2 Characterization of Magnetic Nanoparticles 60 2.4.3 Functionalization of Magnetic Nanoparticles 63 2.4.3.1 Covalent Bond Formation 64 2.4.3.2 Ligand Exchange 64 2.4.3.3 Click Reaction 64 2.4.3.4 Maleimide Coupling 65 2.5 Carbon-Based Nanomaterials 65 2.5.1 Functionalization of Carbon Nanomaterials 65 2.5.2 Synthesis of Functionalized Carbon Nanotubes and Graphene 67 2.6 Application of Functionalized Nanomaterials in the Energy Industry Through Removal of Heavy Metals by Adsorption 67 2.6.1 Removal of Arsenic by Magnetic Nanoparticles 74 2.6.2 Removal of Cadmium by Magnetic Nanoparticles 75 2.6.3 Removal of Chromium by Magnetic Nanoparticles 75 2.6.4 Removal of Mercury by Magnetic Nanoparticles 76 2.7 Conclusions 76 References 77 3 Bionanotechnology-Based Nanopesticide Application in Crop Protection Systems 89 Abhisek Saha 3.1 Introduction 90 3.2 Few Words About Pesticide 92 3.3 What About Biopesticide Demand 93 3.4 A Brief Look on Associates Responsible for Crop Loss 93 3.5 Traditional Inclination of Chemical-Based Pest Management 94 3.6 Nanotechnology in the Field of Agriculture 95 3.7 Why Nanotechnology-Based Agriculture is the Better Option With Special Reference to Nano-Based Pesticide? 95 3.8 Biological-Based Pest Management 96 3.9 Nano-Based Pest Management 96 3.10 Nanopesticides 97 3.11 Required to Qualify for Selection as Nanobiopesticides 98 3.12 Pestiferous Insect’s Management 99 3.12.1 Chemical Nanomaterials 99 3.12.2 Bionanomaterials 99 3.13 Critical Points for Nanobiopesticides 100 3.14 Other Pests 100 3.15 Post-Harvest Management and Their Consequences 101 3.16 Field Test for Nanobiopesticides for Pest Control 101 3.17 Merits and Consequences of Chemical and Bionanomaterials 102 3.18 Conclusion 103 References 104 4 Functionalized Nanomaterials (FNMs) for Environmental Applications 109 Bhavya M.B., Swarnalata Swain, Prangya Bhol, Sudesh Yadav, Ali Altaee, Manav Saxena, Pramila K. Misra and Akshaya K. Samal 4.1 Introduction 110 4.1.1 Methods for the Functionalization of Nanomaterials 110 4.1.1.1 Functionalization by Organic Moieties 111 4.1.1.2 Surface Polymerization 111 4.1.2 Nanomaterial-Functional Group Bonding Type 112 4.1.2.1 Functionalization by Covalent Bond 112 4.1.2.2 Functionalization by Noncovalent Bond 112 4.2 Functionalized Nanomaterials in Environmental Applications 114 4.2.1 Chitosan 114 4.2.2 Cellulose 117 4.2.3 Alumina 121 4.2.4 Mixed Composites 124 4.2.5 Other Nanocomposites for Environment 126 4.3 Conclusion 130 Acknowledgements 130 References 130 5 Synthesis of Functionalized Nanomaterial (FNM)–Based Catalytic Materials 135 Swarnalata Swain, Prangya Bhol, M.B. Bhavya, Sudesh Yadav, Ali Altaee, Manav Saxena, Pramila K. Misra and Akshaya K. Samal 5.1 Introduction 136 5.2 Methods Followed for Fabrication of FNMs 137 5.2.1 Co-Precipitation Method 138 5.2.2 Impregnation 139 5.2.3 Ion Exchange 139 5.2.4 Immobilization/Encapsulation 140 5.2.5 Sol-Gel Technique 140 5.2.6 Chemical Vapor Deposition 141 5.2.7 Microemulsion 141 5.2.8 Hydrothermal 142 5.2.9 Thermal Decomposition 142 5.3 Functionalized Nanomaterials 143 5.3.1 Carbon-Based FNMs 143 5.3.1.1 Carbon-Based FNMs as Heterogeneous Catalysts 145 5.3.2 Metal and Metal Oxide–Based FNMs 147 5.3.2.1 Functionalization Technique of Metal Oxides 147 5.3.2.2 Silver-Based FNMs as Heterogeneous Catalysts 148 5.3.2.3 Platinum-Based FNMs as Heterogeneous Catalysts 150 5.3.2.4 Pd-Based FNMs as Heterogeneous Catalysts 153 5.3.2.5 Zirconia-Based FNMs as Heterogeneous Catalysts 153 5.3.3 Biomaterial-Based FNMs 154 5.3.3.1 Chitosan/Cellulose-Based FNMs as Heterogeneous Catalysts 155 5.3.4 FNMs for Various Other Applications 156 5.3.5 Comparison Table 157 5.4 Conclusion 158 Acknowledgements 159 References 159 6 Functionalized Nanomaterials for Catalytic Applications—Silica and Iron Oxide 169 Deepali Ahluwalia, Sachin Kumar, Sudhir G. Warkar and Anil Kumar 6.1 Introduction 169 6.2 Silicon Dioxide or Silica 171 6.2.1 General 171 6.2.2 Synthesis of Silica Nanoparticles 172 6.2.2.1 Sol-Gel Method 172 6.2.2.2 Microemulsion 172 6.2.3 Functionalization of Silica Nanoparticles 174 6.2.4 Applications 176 6.2.4.1 Epoxidation of Geraniol 176 6.2.4.2 Epoxidation of Styrene 177 6.3 Iron Oxide 177 6.3.1 General 177 6.3.2 Synthesis of Functionalized Fe NPs 178 6.3.2.1 Biopolymer-Based Synthesis 178 6.3.2.2 Plant Extract–Based Synthesis 179 6.3.3 Applications 179 6.3.3.1 Degradation of Dyes 179 6.3.3.2 Wastewater Treatment 181 References 182 7 Nanotechnology for Detection and Removal of Heavy Metals From Contaminated Water 185 Neha Rani Bhagat and Arup Giri 7.1 Introduction 186 7.2 History of Nanotechnology 186 7.3 Heavy Metal Detective Nanotechnology 187 7.3.1 Nanotechnology for Arsenic (Aas) Removal 187 7.3.2 Nanotechnology for Lead Removal from Water 197 7.3.3 Nanotechnology for Cadmium (Cd) Removal from Water 200 7.3.4 Nanotechnology for Nickel (Ni) Removal 200 7.4 Futuristic Research 209 7.5 Conclusion 209 References 210 8 Nanomaterials in Animal Health and Livestock Products 227 Devi Gopinath, Gauri Jairath and Gorakh Mal 8.1 Introduction 228 8.2 Nanomaterials 230 8.3 Nanomaterials and Animal Health 230 8.3.1 Role in Disease Diagnostics 230 8.3.2 Role in Drug Delivery Systems 232 8.3.3 Role in Therapeutics 232 8.3.4 Toxicity and Risks 233 8.4 Nanomaterials and Livestock Produce 234 8.4.1 Nanomaterials and Product Processing 234 8.4.1.1 Nanoencapsulation 235 8.4.2 Nanomaterials and Sensory Attributes 239 8.4.3 Nanomaterials and Packaging 239 8.4.3.1 Nanocomposite 240 8.4.3.2 Nanosensors 241 8.4.4 Safety and Regulations 241 8.5 Conclusion 243 References 243 9 Restoring Quality and Sustainability Through Functionalized Nanocatalytic Processes 251 Nitika Thakur and Bindu Mangla 9.1 Introduction 252 9.1.1 Nanotechnology Toward Attaining Global Sustainability 252 9.2 Nano Approach Toward Upgrading Strategies of Water Treatment and Purification 253 9.2.1 Nanoremediation Through Engineered Nanomaterials 253 9.2.2 Electrospun-Assisted Nanosporus Membrane Utilization 254 9.2.3 Surface Makeover Related to Electrospun Nanomaterials 255 9.2.4 Restoring Energy Sources Through Nanoscience 255 9.3 Conclusion and Future Directions 256 References 256 10 Synthesis and Functionalization of Magnetic and Semiconducting Nanoparticles for Catalysis 261 Dipti Rawat, Asha Kumari and Ragini Raj Singh 10.1 Functionalized Nanomaterials in Catalysis 262 10.1.1 Magnetic Nanoparticles 262 10.1.1.1 Heterogeneous and Homogeneous Catalysis Using Magnetic Nanoparticles 263 10.1.1.2 Organic Synthesis by Magnetic Nanoparticles as Catalyst 264 10.1.2 Semiconducting Nanoparticles 264 10.1.2.1 Homogeneous Catalysis 267 10.1.2.2 Heterogeneous Catalysis 267 10.1.2.3 Photocatalytic Reaction Mechanism 267 10.2 Types of Nanoparticles in Catalysis 268 10.2.1 Magnetic Nanoparticles 268 10.2.1.1 Ferrites 268 10.2.1.2 Ferrites With Shell 269 10.2.1.3 Metallic 271 10.2.1.4 Metallic Nanoparticles With a Shell 271 10.2.2 Semiconducting Nanoparticles 271 10.2.2.1 Binary Semiconducting Nanoparticles in Catalysis 272 10.2.2.2 Oxide-Based Semiconducting Nanoparticles, for Example, TiO2, ZrO2, and ZnO 272 10.2.2.3 Chalcogenide Semiconducting Nanoparticles for Catalysis 273 10.2.2.4 Nitride-Based Semiconducting Photocatalyst 274 10.2.2.5 Ternary Oxides 274 10.2.2.6 Ternary Chalcogenide Semiconductors 274 10.3 Synthesis of Nanoparticles for Catalysis 275 10.3.1 Magnetic Nanoparticles 275 10.3.1.1 Co-Precipitation Route 275 10.3.1.2 Hydrothermal Method 276 10.3.1.3 Microemulsion Method 277 10.3.1.4 Sono-Chemical Method 278 10.3.1.5 Sol-Gel Method 279 10.3.1.6 Biological Method 280 10.3.2 Semiconducting Nanoparticles 280 10.3.2.1 Tollens Method 281 10.3.2.2 Microwave Synthesis 281 10.3.2.3 Hydrothermal Synthesis 282 10.3.2.4 Gas Phase Method 282 10.3.2.5 Laser Ablation 282 10.3.2.6 Wet-Chemical Approaches 283 10.3.2.7 Sol-Gel Method 283 10.4 Functionalization of Nanoparticles for Application in Catalysis 283 10.4.1 Magnetic Nanoparticles 283 10.4.2 Semiconducting Nanoparticles 285 10.4.2.1 Noble Valuable Metal Deposition 285 10.4.2.2 Functionalization by Ion Doping: Metal or Non-Metal 286 10.4.2.3 Semiconductor Composite or Coupling of Two Semiconductors 287 10.5 Application-Based Synthesis 287 10.5.1 Magnetic Nanoparticles 287 10.5.1.1 Silica-Coated Nanoparticles 287 10.5.1.2 Carbon-Coated Magnetic Nanoparticles 288 10.5.1.3 Polymer-Coated Magnetic Nanoparticles 289 10.5.1.4 Semiconductor Shell Formation Over the Magnetic Nanoparticle 290 10.5.2 Semiconducting Nanoparticles 290 10.5.2.1 Semiconductor Nanomaterials in Solar Cell 290 10.5.2.2 Batteries and Fuel Cells 291 10.5.2.3 Semiconducting Nanomaterials for Environment 292 10.5.2.4 Challenges for Water Treatment Using Nanomaterials 292 10.6 Conclusion and Outlook 293 References 294 11 Green Pathways for Palladium Nanoparticle Synthesis: Application and Future Perspectives 303 Arnab Ghosh, Rajeev V. Hegde, Sandeep Suryabhan Gholap, Siddappa A. Patil and Ramesh B. Dateer 11.1 Introduction 304 11.1.1 Methods for Metal Nanoparticle Synthesis 305 11.1.2 Biogenic Synthesis of PdNPs 306 11.1.3 Phytochemicals: Constituent of Plant Extract 307 11.1.4 Techniques for Characterization of Metal NPs 308 11.2 Biosynthesis of PdNPs and Its Applications 308 11.2.1 Synthesis of PdNPs Using Black Pepper Plant Extract 308 11.2.2 Synthesis of PdNPs Using Papaya Peel 313 11.2.3 Synthesis of PdNPs Using Watermelon Rind 315 11.2.4 Synthesis of Cellulose-Supported PdNs@PA 316 11.2.5 PdNPs Synthesis by Pulicaria glutinosa Extract 318 11.2.6 Synthesis of PdNPs using Star Apple 319 11.2.7 PdNPs Synthesis Using Ocimum Sanctum Extract 321 11.2.8 PdNPs Synthesis Using Gum Olibanum Extract 322 11.3 Conclusion and Future Perspectives 323 References 324 12 Metal-Based Nanomaterials: A New Arena for Catalysis 329 Monika Vats, Gaurav Sharma, Varun Sharma, Varun Rawat, Kamalakanta Behera and Arvind Chhabra 12.1 Introduction 329 12.2 Fabrication Methods of Nanocatalysts 333 12.3 Application of Metal-Based Nanocatalysts 335 12.4 Types of Nanocatalysis 337 12.4.1 Green Nanocatalysis 338 12.4.2 Heterogeneous Nanocatalysis 339 12.4.3 Homogeneous Nanocatalysis 340 12.4.4 Multiphase Nanocatalysis 340 12.5 Different Types of Metal-Based Nanoparticles/Crystals Used in Catalysis 340 12.5.1 Transition Metal Nanoparticles 341 12.5.2 Perovskite-Type Oxides Metal Nanoparticles 342 12.5.3 Multi-Metallic/Nano-Alloys/Doped Metal Nanoparticles 343 12.6 Structure and Catalytic Properties Relationship 343 12.7 Conclusion and Future Prospects 344 Acknowledgment 345 References 345 13 Functionalized Nanomaterials for Catalytic Application: Trends and Developments 355 Meena Kumari, Badri Parshad, Jaibir Singh Yadav and Suresh Kumar 13.1 Introduction 356 13.1.1 Nanocatalysis 357 13.1.2 Factors Affecting Nanocatalysis 358 13.1.2.1 Size 359 13.1.2.2 Shape and Morphology 359 13.1.2.3 Catalytic Stability 360 13.1.2.4 Surface Modification 360 13.1.3 Characterization Techniques 361 13.1.4 Principles of Green Chemistry 362 13.1.5 Role of Functionalization 363 13.1.6 Frequently Used Support Materials 363 13.2 Different Types of Nanocatalysts 364 13.2.1 Metal Nanoparticles 364 13.2.2 Alloys and Intermetallic Compounds 365 13.2.3 Single Atom Catalysts 366 13.2.4 Magnetically Separable Nanocatalysts 367 13.2.5 Metal Organic Frameworks 368 13.2.6 Carbocatalysts 369 13.3 Catalytic Applications 370 13.3.1 Organic Transformation 370 13.3.2 Electrocatalysis 374 13.3.2.1 Electrocatalytic Reduction of CO2 374 13.3.2.2 Hydrogen Evolution Reaction 382 13.3.2.3 Fuel Cells 382 13.3.3 Photocatalysis 389 13.3.3.1 Photocatalytic Treatment of Wastewater 391 13.3.3.2 Photocatalytic Conversion of CO2 Into Fuels 391 13.3.3.3 Photocatalytic Hydrogen Evolution From Water 392 13.3.4 Conversion of Biomass Into Fuels 396 13.3.5 Other Applications 397 13.4 Conclusions 398 13.4.1 Future Outlook 398 References 398 14 Carbon Dots: Emerging Green Nanoprobes and Their Diverse Applications 417 Shweta Agarwal and Sonika Bhatia 14.1 Introduction 417 14.2 Classification of Carbon Dots 419 14.3 Environmental Sustainable Synthesis of Carbon Dots 424 14.3.1 Hydrothermal Treatment 432 14.3.2 Solvothermal Treatment 433 14.3.3 Microwave-Assisted Method 434 14.3.4 Pyrolysis Treatment 435 14.3.5 Chemical Oxidation 436 14.4 Characterization of Carbon Dots 438 14.5 Optical and Photocatalytic Properties of Carbon Dots 440 14.5.1 Absorbance 441 14.5.2 Photoluminescence 441 14.5.3 Quantum Yield 443 14.5.4 Up-Conversion Photoluminescence (Anti-Stokes Emission) 444 14.5.5 Photoinduced Electron Transfer 445 14.5.6 Photocatalytic Property 446 14.6 Carbon Dots in Wastewater Treatment 449 14.6.1 Heavy Metal Removal 451 14.6.2 Removal of Dyes 452 14.6.3 Photodegradation of Antibiotics 453 14.6.4 Removal of Other Pollutants 453 14.6.5 Bacterial Inactivation 454 14.6.6 Oil Removal 454 14.7 Carbon Dots for Energy Applications and Environment Safety 454 14.7.1 Solar Light–Driven Splitting of Water 455 14.7.2 Photocatalytic CO2 Reduction 457 14.7.3 Photocatalytic Synthetic Organic Transformations 459 14.8 Biomedical Applications of Carbon Dots 460 14.8.1 Bioimaging 461 14.8.2 Carbon Dots as Biosensors, pH Sensors, and Temperature Sensors 463 14.8.3 Carbon Dots for Drug Delivery 466 14.8.4 Carbon Dots as Carriers for Neurotherapeutic Agents 468 14.9 Ethical, Legal, and Sociological Implications of Carbon Dots 469 14.10 Conclusion and Future Outlook 471 References 472 Index 493


Best Sellers


Product Details
  • ISBN-13: 9781119808978
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: Wiley-Scrivener
  • Height: 10 mm
  • No of Pages: 528
  • Spine Width: 10 mm
  • Width: 10 mm
  • ISBN-10: 1119808979
  • Publisher Date: 24 Aug 2021
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Weight: 454 gr


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Functionalized Nanomaterials for Catalytic Application
John Wiley & Sons Inc -
Functionalized Nanomaterials for Catalytic Application
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Functionalized Nanomaterials for Catalytic Application

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA