Home > Mathematics and Science Textbooks > Chemistry > Goal-Oriented Optimal Experimental Design for Reactive Chemical Systems: (5 Aachener Verfahrenstechnik Series – Process Systems Engineering)
22%
Goal-Oriented Optimal Experimental Design for Reactive Chemical Systems: (5 Aachener Verfahrenstechnik Series – Process Systems Engineering)

Goal-Oriented Optimal Experimental Design for Reactive Chemical Systems: (5 Aachener Verfahrenstechnik Series – Process Systems Engineering)

          
5
4
3
2
1

International Edition


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Add to Wishlist

About the Book

For the design and control of chemical processes, models that can accurately describe the physicochemical interactions of the process are needed. However, even with systematic modeling frameworks, the validation of predictive models is time and cost consuming. The generation of experimental data required for model validation often ensues in considerable effort and costs, which can be reduced via optimal experimental design (OED) methods. This thesis addresses the question on how to obtain predictive models for reactive complex chemical processes with the least experimental effort for a given application. The different challenges encountered during modeling complex reactive systems are discussed in Chapter 2. To this end a tutorial is presented for modeling chemical systems exhibiting dynamics on different time scales owing to fast (equilibrium-limited), and slow (kinetically-limited) reactions. The presented systematic modeling approach, complementing existing literature, is based on index reduction of differential-algebraic-equation systems and is easily incorporated into typical modeling procedures. The approach is illustrated using Michaelis-Menten kinetics and is used for parameter estimation in the methyl benzoate hydrogenation case study. In Chapter 3 OED for bounded-error estimation is covered. The worst-case OED formulation is based on literature and results in a bilevel optimization problem. In this thesis, an improved rigorous solution method for boundederror OED is proposed that can guarantee a global solution. The min-max bilevel OED problem is solved using an adaptation of a generalized semi-infinite program via restriction of the right hand side. The algorithm employed has the advantage that it guarantees a global solution for the OED assuming that both the upper-level and lower-level problems are solved globally. In the case of a local solution for the upper-level and a global solution of the lower-level problem, the solution is feasible, however, it is an upper bound of the global solution. For simple chemical reactions the OED problem can be solved globally in a couple of seconds. However, for more complex problems (modified prey-predator example) a global solution cannot be guaranteed with state-of-the-art global solvers, since the upper-level problem does not converge. The bounded-error OED formulation is extended to a new goal-oriented OED formulation in Chapter 4 that tailors the model precision to its intended end application. In comparison to typical OED methods, instead of trying to improve the precision of all parameters, the proposed method aims at minimizing a metric of the intended process. The method is developed for model-based process design and aims at mitigating a worst-case realization of the process cost, and is called therefore, optimal experimental design for optimal process design (OEDOPD). The OED-OPD formulation results in a min-max-min problem and is solved using an ad-hoc solution method, since algorithms for general nonconvex, nonlinear trilevel problems do not yet exist. The solution method is based on the discretization of upper-level variables. The benefit of using tailored OED methods in comparison to typical (classical) OED formulations is demonstrated via two examples: a simple illustrative example and the van de Vusse reaction. Both examples can be solved globally and fairly quickly, in 200 CPU seconds in average for each discretization point. The two examples showed that the experimental costs could be reduced in comparison to classical OED methods while still resulting in a satisfactory process design.


Best Sellers


Product Details
  • ISBN-13: 9783958862920
  • Publisher: Verlag G. Mainz
  • Publisher Imprint: Verlag G. Mainz
  • Height: 210 mm
  • No of Pages: 114
  • Spine Width: 8 mm
  • Width: 148 mm
  • ISBN-10: 3958862926
  • Publisher Date: 17 Jul 2019
  • Binding: Paperback
  • Language: English
  • Series Title: 5 Aachener Verfahrenstechnik Series – Process Systems Engineering
  • Weight: 168 gr


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Goal-Oriented Optimal Experimental Design for Reactive Chemical Systems: (5 Aachener Verfahrenstechnik Series – Process Systems Engineering)
Verlag G. Mainz -
Goal-Oriented Optimal Experimental Design for Reactive Chemical Systems: (5 Aachener Verfahrenstechnik Series – Process Systems Engineering)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Goal-Oriented Optimal Experimental Design for Reactive Chemical Systems: (5 Aachener Verfahrenstechnik Series – Process Systems Engineering)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA