close menu
Bookswagon-24x7 online bookstore
close menu
My Account
GPU-Accelerated Computing with Python 3 and CUDA: From low-level kernels to real-world applications in scientific computing and machine learning

GPU-Accelerated Computing with Python 3 and CUDA: From low-level kernels to real-world applications in scientific computing and machine learning

          
5
4
3
2
1

Out of Stock


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Notify me when this book is in stock
Add to Wishlist

About the Book

Accelerate your Python code on the GPU using CUDA, Numba, and modern libraries to solve real-world problems faster and more efficiently. Key Features Build a solid foundation in CUDA with Python, from kernel design to execution and debugging Optimize GPU performance with efficient memory access, CUDA streams, and multi-GPU scaling Use JAX, CuPy, RAPIDS, and Numba to accelerate numerical computing and machine learning Create practical GPU applications, from PDE solvers to image processing and transformers Book DescriptionWriting high-performance Python code doesn’t have to mean switching to C++. This book shows you how to accelerate Python applications using NVIDIA’s CUDA platform and a modern ecosystem of Python tools and libraries. Aimed at researchers, engineers, and data scientists, it offers a practical yet deep understanding of GPU programming and how to fully exploit modern GPU hardware. You’ll begin with the fundamentals of CUDA programming in Python using Numba-CUDA, learning how GPUs work and how to write, execute, and debug custom GPU kernels. Building on this foundation, the book explores memory access optimization, asynchronous execution with CUDA streams, and multi-GPU scaling using Dask-CUDA. Performance analysis and tuning are emphasized throughout, using NVIDIA Nsight profilers. You’ll also learn to use high-level GPU libraries such as JAX, CuPy, and RAPIDS to accelerate numerical Python workflows with minimal code changes. These techniques are applied to real-world examples, including PDE solvers, image processing, physical simulations, and transformer models. Written by experienced GPU practitioners, this hands-on guide emphasizes reproducible workflows using Python 3.10+, CUDA 12.3+, and tools like the Pixi package manager. By the end, you’ll have future-ready skills for building scalable GPU applications in Python.What you will learn Understand GPU execution, parallelism, and the CUDA programming model Write, launch, and debug custom CUDA kernels in Python with CUDA Profile GPU code with NVIDIA Nsight and optimize memory access Use CUDA streams and async execution to overlap compute and transfers Apply JAX, CuPy, and RAPIDS to numerical computing and machine learning Scale GPU workloads across devices using Dask and multi-GPU strategies Accelerate PDE solvers, simulations, and image processing on the GPU Build, train, and run a transformer model from scratch on the GPU Who this book is forPython developers, (data) scientists, engineers, and researchers looking to accelerate numerical computations without switching to low-level languages. This book is ideal for those with experience in scientific Python (NumPy, Pandas, SciPy) and a basic understanding of computing fundamentals who want deeper control over performance in GPU environments.

Table of Contents:
Table of Contents

  1. Why GPU programming with CUDA in Python 3?
  2. Setting up a GPU programming environment locally and in the cloud
  3. Writing and executing a CUDA kernel with numba
  4. Profiling and debugging CUDA code
  5. Optimize memory access patterns and other tricks
  6. Using CUDA Streams for Asynchronous Data Transfers
  7. Scaling to multiple GPUs
  8. Bringing NumPy and SciPy to the GPU with CuPy
  9. Bringing Pandas and Scikit-learn to the GPU with Rapids
  10. Solving Optimization Problems on the GPU with JAX
  11. Solving the heat equation on the GPU
  12. Image processing on the GPU
  13. Simulating Atomic Interactions on the GPU
  14. Implementing your own transformer based language model from scratch
  15. Expanding and Deepening your GPU Programming Knowledge


Best Seller

| | See All

Product Details
  • ISBN-13: 9781803248103
  • Publisher: Packt Publishing Limited
  • Publisher Imprint: Packt Publishing Limited
  • Language: English
  • ISBN-10: 1803248106
  • Publisher Date: 31 Mar 2026
  • Binding: Digital (delivered electronically)
  • Sub Title: From low-level kernels to real-world applications in scientific computing and machine learning


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Be The First to Review
GPU-Accelerated Computing with Python 3 and CUDA: From low-level kernels to real-world applications in scientific computing and machine learning
Packt Publishing Limited -
GPU-Accelerated Computing with Python 3 and CUDA: From low-level kernels to real-world applications in scientific computing and machine learning
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

GPU-Accelerated Computing with Python 3 and CUDA: From low-level kernels to real-world applications in scientific computing and machine learning

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    | | See All


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA