close menu
Bookswagon-24x7 online bookstore
close menu
My Account
Home > Mathematics and Science Textbooks > Science: general issues > Graph-Based Weakly-Supervised Methods for Information Extraction & Integration: (English)
Graph-Based Weakly-Supervised Methods for Information Extraction & Integration: (English)

Graph-Based Weakly-Supervised Methods for Information Extraction & Integration: (English)

          
5
4
3
2
1

Out of Stock


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Notify me when this book is in stock
Add to Wishlist

About the Book

The variety and complexity of potentially-related data resources available for querying---webpages, databases, data warehouses---has been growing ever more rapidly. There is a growing need to pose integrative queries across multiple such sources, exploiting foreign keys and other means of interlinking data to merge information from diverse sources. This has traditionally been the focus of research within Information Extraction (IE) and Information Integration (II) communities, with IE focusing on converting unstructured sources into structured sources, and II focusing on providing a unified view of diverse structured data sources. However, most of the current IE and II methods, which can potentially be applied to the problem of integration across sources, require large amounts of human supervision, often in the form of annotated data. This need for extensive supervision makes existing methods expensive to deploy and difficult to maintain. In this thesis, we develop techniques that generalize from limited human input, via weakly-supervised methods for IE and II. In particular, we argue that graph-based representation of data and learning over such graphs can result in effective and scalable methods for large-scale Information Extraction and Integration. Within IE, we focus on the problem of assigning semantic classes to entities. First we develop a context pattern induction method to extend small initial entity lists of various semantic classes. We also demonstrate that features derived from such extended entity lists can significantly improve performance of state-of-the-art discriminative taggers. The output of pattern-based class-instance extractors is often high-precision and low-recall in nature, which is inadequate for many real world applications. We use Adsorption, a graph based label propagation algorithm, to significantly increase recall of an initial high-precision, low-recall pattern-based extractor by combining evidences from unstructured and structured text corpora. Building on Adsorption, we propose a new label propagation algorithm, Modified Adsorption (MAD), and demonstrate its effectiveness on various real-world datasets. Additionally, we also show how class-instance acquisition performance in the graph-based SSL setting can be improved by incorporating additional semantic constraints available in independently developed knowledge bases. Within Information Integration, we develop a novel system, Q, which draws ideas from machine learning and databases to help a non-expert user construct data-integrating queries based on keywords (across databases) and interactive feedback on answers. We also present an information need-driven strategy for automatically incorporating new sources and their information in Q. We also demonstrate that Q's learning strategy is highly effective in combining the outputs of "black box" schema matchers and in re-weighting bad alignments. This removes the need to develop an expensive mediated schema which has been necessary for most previous systems.


Best Seller

| | See All


Product Details
  • ISBN-13: 9781243780928
  • Publisher: Proquest, Umi Dissertation Publishing
  • Publisher Imprint: Proquest, Umi Dissertation Publishing
  • Edition: Annotated edition
  • Language: English
  • Returnable: N
  • Spine Width: 10 mm
  • Width: 189 mm
  • ISBN-10: 1243780924
  • Publisher Date: 01 Sep 2011
  • Binding: Paperback
  • Height: 246 mm
  • No of Pages: 190
  • Series Title: English
  • Weight: 349 gr


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Graph-Based Weakly-Supervised Methods for Information Extraction & Integration: (English)
Proquest, Umi Dissertation Publishing -
Graph-Based Weakly-Supervised Methods for Information Extraction & Integration: (English)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Graph-Based Weakly-Supervised Methods for Information Extraction & Integration: (English)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    | | See All


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA