Home > Computing and Information Technology > Computer science > Computer modelling and simulation > Hands-On Deep Learning for Finance: Implement deep learning techniques and algorithms to create powerful trading strategies
Hands-On Deep Learning for Finance: Implement deep learning techniques and algorithms to create powerful trading strategies

Hands-On Deep Learning for Finance: Implement deep learning techniques and algorithms to create powerful trading strategies

          
5
4
3
2
1

Out of Stock


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Notify me when this book is in stock
Add to Wishlist

About the Book

Take your quantitative strategies to the next level by exploring nine examples that make use of cutting-edge deep learning technologies, including CNNs, LSTMs, GANs, reinforcement learning, and CapsNets Key Features Implement deep learning techniques and algorithms to build financial models Apply modern AI techniques in quantitative market modeling and investment decision making Leverage Python libraries for rapid development and prototyping Book DescriptionQuantitative methods are the vanguard of the investment management industry. This book shows how to enhance trading strategies and investments in financial markets using deep learning algorithms. This book is an excellent reference to understand how deep learning models can be leveraged to capture insights from financial data. You will implement deep learning models using Python libraries such as TensorFlow and Keras. You will learn various deep learning algorithms to build models for understanding financial market dynamics and exploiting them in a systematic manner. This book takes a pragmatic approach to address various aspects of asset management. The information content in non-structured data like news flow is crystalized using BLSTM. Autoencoders for efficient index replication is discussed in detail. You will use CNN to develop a trading signal with simple technical indicators, and improvements offered by more complex techniques such as CapsNets. Volatility is given due emphasis by demonstrating the superiority of forecasts employing LSTM, and Monte Carlo simulations using GAN for value at risk computations. These are then brought together by implementing deep reinforcement learning for automated trading. This book will serve as a continuing reference for implementing deep learning models to build investment strategies.What you will learn Implement quantitative financial models using the various building blocks of a deep neural network Build, train, and optimize deep networks from scratch Use LSTMs to process data sequences such as time series and news feeds Implement convolutional neural networks (CNNs), CapsNets, and other models to create trading strategies Adapt popular neural networks for pattern recognition in finance using transfer learning Automate investment decisions by using reinforcement learning Discover how a risk model can be constructed using D-GAN Who this book is forIf you're a finance or investment professional who wants to lead the development of quantitative strategies, this book is for you. With this practical guide, you'll be able to use deep learning methods for building financial models and incorporating them in your investment process. Anyone who wants to enter the fascinating domain of quantitative finance using the power of deep learning algorithms and techniques will also find this book useful. Basic knowledge of machine learning and Python programming is required.

Table of Contents:
Table of Contents Deep learning for finance 101 Designing neural network architectures Construction, testing and validation of financial models Index replication by auto-encoders Volatility forecasting by LSTM Trading rule identification by CNN Asset allocation by LSTM over CNN Digesting news by NLP with BLSTM Risk Measurement Using GAN Chart visual analysis by transfer learning Better chart analysis using CapsNet Training trader robots by deep reinforcement learning What’s next ?


Best Sellers


Product Details
  • ISBN-13: 9781789613179
  • Publisher: Packt Publishing Limited
  • Publisher Imprint: Packt Publishing Limited
  • Height: 235 mm
  • No of Pages: 442
  • Spine Width: 23 mm
  • Weight: 757 gr
  • ISBN-10: 1789613175
  • Publisher Date: 28 Feb 2020
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Sub Title: Implement deep learning techniques and algorithms to create powerful trading strategies
  • Width: 191 mm


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Hands-On Deep Learning for Finance: Implement deep learning techniques and algorithms to create powerful trading strategies
Packt Publishing Limited -
Hands-On Deep Learning for Finance: Implement deep learning techniques and algorithms to create powerful trading strategies
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Hands-On Deep Learning for Finance: Implement deep learning techniques and algorithms to create powerful trading strategies

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA