Home > Medicine & Health Science textbooks > Medical specialties, branches of medicine > Neurology and clinical neurophysiology > Internet of Things and Machine Learning for Type I and Type II Diabetes: Use cases
45%
Internet of Things and Machine Learning for Type I and Type II Diabetes: Use cases

Internet of Things and Machine Learning for Type I and Type II Diabetes: Use cases

          
5
4
3
2
1

Available


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist
X

About the Book

Internet of Things and Machine Learning for Type I and Type II Diabetes: Use Cases provides a medium of exchange of expertise and addresses the concerns, needs, and problems associated with Type I and Type II diabetes. Expert contributions come from researchers across biomedical, data mining, and deep learning. This is an essential resource for both the AI and Biomedical research community, crossing various sectors for broad coverage of the concepts, themes, and instrumentalities of this important and evolving area. Coverage includes IoT, AI, Deep Learning, Machine Learning and Big Data Analytics for diabetes and health informatics.

Table of Contents:
Section 1: Diagnosis 1. An Intelligent Diagnostic approach for diabetes Using rule-based Machine Learning techniques 2. Ensemble Sparse Intelligent Mining Techniques for Diabetes Diagnosis 3. Detection of Diabetic Retinopathy Using Neural Networks 4. An Intelligent Remote Diagnostic Approach for Diabetes Using Machine Learning Techniques 5. Diagnosis of Diabetic Retinopathy in Retinal Fundus Images Using Machine Learning and Deep Learning Models 6. Diagnosis of Diabetes Mellitus using Deep Learning Techniques and Big Data Section 2: Glucose monitoring 7. IoT and Machine Learning for Management of Diabetes Mellitus 8. Prediction of glucose concentration in type 1 diabetes patients based on Machine learning techniques 9. ML-Based PCA Methods to Diagnose Statistical Distribution of Blood Glucose Levels of Diabetic Patients Section 3: Prediction of complications and risk stratification 10. Overview of New trends on deep learning models for diabetes risk prediction 11. Clinical applications of deep learning in diabetes and its enhancements with future predictions 12. Feature Classification and Extraction of Medical Data Related to Diabetes Using Machine Learning Techniques: A Review 13. ML-based predictive model for type 2 diabetes mellitus using genetic and clinical data 14. Applications of IoT and data mining techniques for diabetes monitoring 15. Decision-making System for the Prediction of Type II Diabetes Using Data Balancing and Machine Learning Techniques 16. Comparative Analysis of Machine Learning Tools in Diabetes Prediction 17. Data Analytic models of patients dependent on insulin treatment 18. Prediction of Diabetes using Hybridization of Radial Basis Function Network and Differential Evaluation based Optimization Technique 19. An Overview of New Trends On Deep Learning Models For Diabetes Risk Prediction Section 4: Dialysis 20. Progression and Identification of heart disease risk factors in diabetic patients from electronic health records 21. An Intelligent Fog Computing-based Diabetes Prediction System for Remote Healthcare Applications 22. Artificial intelligence approaches for risk stratification of diabetic kidney disease 23. Computational Methods for predicting the occurrence of cardiac autonomic neuropathy 24. Development of a Clinical Forecasting Model to Predict Comorbid Depression in Diabetes Patients and its Application in Policy Making for Depression Screening Section 5: Drug design and Treatment Response 25. Enhancing Diabetic Maculopathy Classification through a Synergistic Deep Learning Approach by Combining Convolutional Neural Networks, Transfer Learning, and Attention Mechanisms 26. Pharmacogenomics: the roles of genetic factors on treatment response and outcomes in diabetes 27. Predicting treatment response in diabetes: the roles of machine learning-based models 28. Antidiabetic Potential of Mangrove Plants: An Updated Review


Best Sellers


Product Details
  • ISBN-13: 9780323956864
  • Publisher: Elsevier - Health Sciences Division
  • Publisher Imprint: Elsevier - Health Sciences Division
  • Height: 276 mm
  • No of Pages: 448
  • Sub Title: Use cases
  • Width: 216 mm
  • ISBN-10: 0323956866
  • Publisher Date: 09 Jul 2024
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Weight: 450 gr


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Internet of Things and Machine Learning for Type I and Type II Diabetes: Use cases
Elsevier - Health Sciences Division -
Internet of Things and Machine Learning for Type I and Type II Diabetes: Use cases
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Internet of Things and Machine Learning for Type I and Type II Diabetes: Use cases

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA