Home > Mathematics and Science Textbooks > Mathematics > Introduction to Bayesian Statistics
5%
Introduction to Bayesian Statistics

Introduction to Bayesian Statistics

          
5
4
3
2
1

International Edition


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

"...this edition is useful and effective in teaching Bayesian inference at both elementary and intermediate levels. It is a well-written book on elementary Bayesian inference, and the material is easily accessible. It is both concise and timely, and provides a good collection of overviews and reviews of important tools used in Bayesian statistical methods." There is a strong upsurge in the use of Bayesian methods in applied statistical analysis, yet most introductory statistics texts only present frequentist methods. Bayesian statistics has many important advantages that students should learn about if they are going into fields where statistics will be used. In this third Edition, four newly-added chapters address topics that reflect the rapid advances in the field of Bayesian statistics. The authors continue to provide a Bayesian treatment of introductory statistical topics, such as scientific data gathering, discrete random variables, robust Bayesian methods, and Bayesian approaches to inference for discrete random variables, binomial proportions, Poisson, and normal means, and simple linear regression. In addition, more advanced topics in the field are presented in four new chapters: Bayesian inference for a normal with unknown mean and variance; Bayesian inference for a Multivariate Normal mean vector; Bayesian inference for the Multiple Linear Regression Model; and Computational Bayesian Statistics including Markov Chain Monte Carlo. The inclusion of these topics will facilitate readers' ability to advance from a minimal understanding of Statistics to the ability to tackle topics in more applied, advanced level books. Minitab macros and R functions are available on the book's related website to assist with chapter exercises. Introduction to Bayesian Statistics, Third Edition also features: Topics including the Joint Likelihood function and inference using independent Jeffreys priors and join conjugate prior The cutting-edge topic of computational Bayesian Statistics in a new chapter, with a unique focus on Markov Chain Monte Carlo methods Exercises throughout the book that have been updated to reflect new applications and the latest software applications Detailed appendices that guide readers through the use of R and Minitab software for Bayesian analysis and Monte Carlo simulations, with all related macros available on the book's website Introduction to Bayesian Statistics, Third Edition is a textbook for upper-undergraduate or first-year graduate level courses on introductory statistics course with a Bayesian emphasis. It can also be used as a reference work for statisticians who require a working knowledge of Bayesian statistics.

Table of Contents:
Preface xiii 1 Introduction to Statistical Science 1 1.1 The Scientic Method: A Process for Learning 3 1.2 The Role of Statistics in the Scientic Method 5 1.3 Main Approaches to Statistics 5 1.4 Purpose and Organization of This Text 8 2 Scientic Data Gathering 13 2.1 Sampling from a Real Population 14 2.2 Observational Studies and Designed Experiments 17 Monte Carlo Exercises 23 3 Displaying and Summarizing Data 31 3.1 Graphically Displaying a Single Variable 32 3.2 Graphically Comparing Two Samples 39 3.3 Measures of Location 41 3.4 Measures of Spread 44 3.5 Displaying Relationships Between Two or More Variables 46 3.6 Measures of Association for Two or More Variables 49 Exercises 52 4 Logic, Probability, and Uncertainty 59 4.1 Deductive Logic and Plausible Reasoning 60 4.2 Probability 62 4.3 Axioms of Probability 64 4.4 Joint Probability and Independent Events 65 4.5 Conditional Probability 66 4.6 Bayes' Theorem 68 4.7 Assigning Probabilities 74 4.8 Odds and Bayes Factor 75 4.9 Beat the Dealer 76 Exercises 80 5 Discrete Random Variables 83 5.1 Discrete Random Variables 84 5.2 Probability Distribution of a Discrete Random Variable 86 5.3 Binomial Distribution 90 5.4 Hypergeometric Distribution 92 5.5 Poisson Distribution 93 5.6 Joint Random Variables 96 5.7 Conditional Probability for Joint Random Variables 100 Exercises 104 6 Bayesian Inference for Discrete Random Variables 109 6.1 Two Equivalent Ways of Using Bayes' Theorem 114 6.2 Bayes' Theorem for Binomial with Discrete Prior 116 6.3 Important Consequences of Bayes' Theorem 119 6.4 Bayes' Theorem for Poisson with Discrete Prior 120 Exercises 122 Computer Exercises 126 7 Continuous Random Variables 129 7.1 Probability Density Function 131 7.2 Some Continuous Distributions 135 7.3 Joint Continuous Random Variables 143 7.4 Joint Continuous and Discrete Random Variables 144 Exercises 147 8 Bayesian Inference for Binomial Proportion 149 8.1 Using a Uniform Prior 150 8.2 Using a Beta Prior 151 8.3 Choosing Your Prior 154 8.4 Summarizing the Posterior Distribution 158 8.5 Estimating the Proportion 161 8.6 Bayesian Credible Interval 162 Exercises 164 Computer Exercises 167 9 Comparing Bayesian and Frequentist Inferences for Proportion 169 9.1 Frequentist Interpretation of Probability and Parameters 170 9.2 Point Estimation 171 9.3 Comparing Estimators for Proportion 174 9.4 Interval Estimation 175 9.5 Hypothesis Testing 178 9.6 Testing a One-Sided Hypothesis 179 9.7 Testing a Two-Sided Hypothesis 182 Exercises 187 Monte Carlo Exercises 190 10 Bayesian Inference for Poisson 193 10.1 Some Prior Distributions for Poisson 194 10.2 Inference for Poisson Parameter 200 Exercises 207 Computer Exercises 208 11 Bayesian Inference for Normal Mean 211 11.1 Bayes' Theorem for Normal Mean with a Discrete Prior 211 11.2 Bayes' Theorem for Normal Mean with a Continuous Prior 218 11.3 Choosing Your Normal Prior 222 11.4 Bayesian Credible Interval for Normal Mean 224 11.5 Predictive Density for Next Observation 227 Exercises 230 Computer Exercises 232 12 Comparing Bayesian and Frequentist Inferences for Mean 237 12.1 Comparing Frequentist and Bayesian Point Estimators 238 12.2 Comparing Condence and Credible Intervals for Mean 241 12.3 Testing a One-Sided Hypothesis about a Normal Mean 243 12.4 Testing a Two-Sided Hypothesis about a Normal Mean 247 Exercises 251 13 Bayesian Inference for Di erence Between Means 255 13.1 Independent Random Samples from Two Normal Distributions 256 13.2 Case 1: Equal Variances 257 13.3 Case 2: Unequal Variances 262 13.4 Bayesian Inference for Dierence Between Two Proportions Using Normal Approximation 265 13.5 Normal Random Samples from Paired Experiments 266 Exercises 272 14 Bayesian Inference for Simple Linear Regression 283 14.1 Least Squares Regression 284 14.2 Exponential Growth Model 288 14.3 Simple Linear Regression Assumptions 290 14.4 Bayes' Theorem for the Regression Model 292 14.5 Predictive Distribution for Future Observation 298 Exercises 303 Computer Exercises 312 15 Bayesian Inference for Standard Deviation 315 15.1 Bayes' Theorem for Normal Variance with a Continuous Prior 316 15.2 Some Specic Prior Distributions and the Resulting Posteriors 318 15.3 Bayesian Inference for Normal Standard Deviation 326 Exercises 332 Computer Exercises 335 16 Robust Bayesian Methods 337 16.1 Eect of Misspecied Prior 338 16.2 Bayes' Theorem with Mixture Priors 340 Exercises 349 Computer Exercises 351 17 Bayesian Inference for Normal with Unknown Mean and Variance 355 17.1 The Joint Likelihood Function 358 17.2 Finding the Posterior when Independent Jeffreys' Priors for μ and σ2 Are Used 359 17.3 Finding the Posterior when a Joint Conjugate Prior for μ and σ2 Is Used 361 17.4 Difference Between Normal Means with Equal Unknown Variance 367 17.5 Difference Between Normal Means with Unequal Unknown Variances 377 Computer Exercises 383 Appendix: Proof that the Exact Marginal Posterior Distribution of μ is Student's t 385 18 Bayesian Inference for Multivariate Normal Mean Vector 393 18.1 Bivariate Normal Density 394 18.2 Multivariate Normal Distribution 397 18.3 The Posterior Distribution of the Multivariate Normal Mean Vector when Covariance Matrix Is Known 398 18.4 Credible Region for Multivariate Normal Mean Vector when Covariance Matrix Is Known 400 18.5 Multivariate Normal Distribution with Unknown Covariance Matrix 402 Computer Exercises 406 19 Bayesian Inference for the Multiple Linear Regression Model 411 19.1 Least Squares Regression for Multiple Linear Regression Model 412 19.2 Assumptions of Normal Multiple Linear Regression Model 414 19.3 Bayes' Theorem for Normal Multiple Linear Regression Model 415 19.4 Inference in the Multivariate Normal Linear Regression Model 419 19.5 The Predictive Distribution for a Future Observation 425 Computer Exercises 428 20 Computational Bayesian Statistics Including Markov Chain Monte Carlo 431 20.1 Direct Methods for Sampling from the Posterior 436 20.2 Sampling - Importance - Resampling 450 20.3 Markov Chain Monte Carlo Methods 454 20.4 Slice Sampling 470 20.5 Inference from a Posterior Random Sample 473 20.6 Where to Next? 475 A Introduction to Calculus 477 B Use of Statistical Tables 497 C Using the Included Minitab Macros 523 D Using the Included R Functions 543 E Answers to Selected Exercises 565 References 591 Index 595


Best Sellers


Product Details
  • ISBN-13: 9781118091562
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: John Wiley & Sons Inc
  • Edition: 3
  • Language: English
  • Returnable: N
  • Spine Width: 33 mm
  • Width: 158 mm
  • ISBN-10: 1118091566
  • Publisher Date: 29 Nov 2016
  • Binding: Hardback
  • Height: 234 mm
  • No of Pages: 624
  • Series Title: English
  • Weight: 975 gr


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Introduction to Bayesian Statistics
John Wiley & Sons Inc -
Introduction to Bayesian Statistics
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Introduction to Bayesian Statistics

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA