Home > Mathematics and Science Textbooks > Mathematics > Calculus and mathematical analysis > Differential calculus and equations > Introduction to Differential Equations with Dynamical Systems
30%
Introduction to Differential Equations with Dynamical Systems

Introduction to Differential Equations with Dynamical Systems

          
5
4
3
2
1

Available


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Add to Wishlist

About the Book

Many textbooks on differential equations are written to be interesting to the teacher rather than the student. Introduction to Differential Equations with Dynamical Systems is directed toward students. This concise and up-to-date textbook addresses the challenges that undergraduate mathematics, engineering, and science students experience during a first course on differential equations. And, while covering all the standard parts of the subject, the book emphasizes linear constant coefficient equations and applications, including the topics essential to engineering students. Stephen Campbell and Richard Haberman--using carefully worded derivations, elementary explanations, and examples, exercises, and figures rather than theorems and proofs--have written a book that makes learning and teaching differential equations easier and more relevant. The book also presents elementary dynamical systems in a unique and flexible way that is suitable for all courses, regardless of length.

Table of Contents:
Preface ix CHAPTER 1: First-Order Differential Equations and Their Applications 1 1.1 Introduction to Ordinary Differential Equations 1 1.2 The Definite Integral and the Initial Value Problem 4 1.2.1 The Initial Value Problem and the Indefinite Integral 5 1.2.2 The Initial Value Problem and the Definite Integral 6 1.2.3 Mechanics I: Elementary Motion of a Particle with Gravity Only 8 1.3 First-Order Separable Differential Equations 13 1.3.1 Using Definite Integrals for Separable Differential Equations 16 1.4 Direction Fields 19 1.4.1 Existence and Uniqueness 25 1.5 Euler's Numerical Method (optional) 31 1.6 First-Order Linear Differential Equations 37 1.6.1 Form of the General Solution 37 1.6.2 Solutions of Homogeneous First-Order Linear Differential Equations 39 1.6.3 Integrating Factors for First-Order Linear Differential Equations 42 1.7 Linear First-Order Differential Equations with Constant Coefficients and Constant Input 48 1.7.1 Homogeneous Linear Differential Equations with Constant Coefficients 48 1.7.2 Constant Coefficient Linear Differential Equations with Constant Input 50 1.7.3 Constant Coefficient Differential Equations with Exponential Input 52 1.7.4 Constant Coefficient Differential Equations with Discontinuous Input 52 1.8 Growth and Decay Problems 59 1.8.1 A First Model of Population Growth 59 1.8.2 Radioactive Decay 65 1.8.3 Thermal Cooling 68 1.9 Mixture Problems 74 1.9.1 Mixture Problems with a Fixed Volume 74 1.9.2 Mixture Problems with Variable Volumes 77 1.10 Electronic Circuits 82 1.11 Mechanics II: Including Air Resistance 88 1.12 Orthogonal Trajectories (optional) 92 CHAPTER 2: Linear Second- and Higher-Order Differential Equations 96 2.1 General Solution of Second-Order Linear Differential Equations 96 2.2 Initial Value Problem (for Homogeneous Equations) 100 2.3 Reduction of Order 107 2.4 Homogeneous Linear Constant Coefficient Differential Equations (Second Order) 112 2.4.1 Homogeneous Linear Constant Coefficient Differential Equations (nth-Order) 122 2.5 Mechanical Vibrations I: Formulation and Free Response 124 2.5.1 Formulation of Equations 124 2.5.2 Simple Harmonic Motion (No Damping, delta =0) 128 2.5.3 Free Response with Friction (delta > 0) 135 2.6 The Method of Undetermined Coefficients 142 2.7 Mechanical Vibrations II: Forced Response 159 2.7.1 Friction is Absent (delta = 0) 159 2.7.2 Friction is Present (delta > 0) (Damped Forced Oscillations) 168 2.8 Linear Electric Circuits 174 2.9 Euler Equation 179 2.10 Variation of Parameters (Second-Order) 185 2.11 Variation of Parameters (nth-Order) 193 CHAPTER 3: The Laplace Transform 197 3.1 Definition and Basic Properties 197 3.1.1 The Shifting Theorem (Multiplying by an Exponential) 205 3.1.2 Derivative Theorem (Multiplying by t ) 210 3.2 Inverse Laplace Transforms (Roots, Quadratics, and Partial Fractions) 213 3.3 Initial Value Problems for Differential Equations 225 3.4 Discontinuous Forcing Functions 234 3.4.1 Solution of Differential Equations 239 3.5 Periodic Functions 248 3.6 Integrals and the Convolution Theorem 253 3.6.1 Derivation of the Convolution Theorem (optional) 256 3.7 Impulses and Distributions 260 CHAPTER 4: An Introduction to Linear Systems of Differential Equations and Their Phase Plane 265 4.1 Introduction 265 4.2 Introduction to Linear Systems of Differential Equations 268 4.2.1 Solving Linear Systems Using Eigenvalues and Eigenvectors of the Matrix 269 4.2.2 Solving Linear Systems if the Eigenvalues are Real and Unequal 272 4.2.3 Finding General Solutions of Linear Systems in the Case of Complex Eigenvalues 276 4.2.4 Special Systems with Complex Eigenvalues (optional) 279 4.2.5 General Solution of a Linear System if the Two Real Eigenvalues are Equal (Repeated) Roots 281 4.2.6 Eigenvalues and Trace and Determinant (optional) 283 4.3 The Phase Plane for Linear Systems of Differential Equations 287 4.3.1 Introduction to the Phase Plane for Linear Systems of Differential Equations 287 4.3.2 Phase Plane for Linear Systems of Differential Equations 295 4.3.3 Real Eigenvalues 296 4.3.4 Complex Eigenvalues 304 4.3.5 General Theorems 310 CHAPTER 5: Mostly Nonlinear First-Order Differential Equations 315 5.1 First-Order Differential Equations 315 5.2 Equilibria and Stability 316 5.2.1 Equilibrium 316 5.2.2 Stability 317 5.2.3 Review of Linearization 318 5.2.4 Linear Stability Analysis 318 5.3 One-Dimensional Phase Lines 322 5.4 Application to Population Dynamics: The Logistic Equation 327 CHAPTER 6: Nonlinear Systems of Differential Equations in the Plane 332 6.1 Introduction 332 6.2 Equilibria of Nonlinear Systems, Linear Stability Analysis of Equilibrium, and the Phase Plane 335 6.2.1 Linear Stability Analysis and the Phase Plane 336 6.2.2 Nonlinear Systems: Summary, Philosophy, Phase Plane, Direction Field, Nullclines 341 6.3 Population Models 349 6.3.1 Two Competing Species 350 6.3.2 Predator-Prey Population Models 356 6.4 Mechanical Systems 363 6.4.1 Nonlinear Pendulum 363 6.4.2 Linearized Pendulum 364 6.4.3 Conservative Systems and the Energy Integral 364 6.4.4 The Phase Plane and the Potential 367 Answers to Odd-Numbered Exercises 379 Index 429


Best Sellers


Product Details
  • ISBN-13: 9780691124742
  • Publisher: Princeton University Press
  • Publisher Imprint: Princeton University Press
  • Depth: 25
  • Language: English
  • Returnable: Y
  • Spine Width: 31 mm
  • Width: 178 mm
  • ISBN-10: 0691124744
  • Publisher Date: 21 Apr 2008
  • Binding: Hardback
  • Height: 254 mm
  • No of Pages: 448
  • Series Title: English
  • Weight: 1049 gr


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Introduction to Differential Equations with Dynamical Systems
Princeton University Press -
Introduction to Differential Equations with Dynamical Systems
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Introduction to Differential Equations with Dynamical Systems

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA