Home > General > Introduction to Impact Dynamics
6%
Introduction to Impact Dynamics

Introduction to Impact Dynamics

          
5
4
3
2
1

International Edition


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

Fundamental guidance—including concepts, models, and methodology—for better understanding the dynamic behavior of materials and for designing for objects and structures under impact or intensive dynamic loading This book introduces readers to the dynamic response of structures with important emphasis on the material behavior under dynamic loadings. It utilizes theoretical modelling and analytical methods in order to provide readers with insight into the various phenomena. The content of the book is an introduction to the fundamental aspects, which underpin many important industrial areas. These areas include the safety of various transportation systems and a range of different structures when subjected to various impact and dynamic loadings, including terrorist attacks. Presented in three parts—Stress Waves in Solids, Dynamic Behaviors of Materials Under High Strain Rate, and Dynamic Response of Structures to Impact and Pulse Loading—Introduction to Impact Dynamics covers elastic waves, rate dependent behaviors of materials, effects of tensile force, inertial effects, and more. The book also features numerous case studies to aid in facilitating learning. The strength of the book is its clarity, balanced coverage, and practical examples, which allow students to learn the overall knowledge of impact dynamics in a limited time whilst directing them to explore more advanced technical knowledge and skills. Considers both the dynamic behavior of materials and stress waves, and the dynamic structural response and energy absorption, emphasizing the interaction between material behavior and the structural response Provides a comprehensive description of the phenomenon of impact of structures, containing both fundamental issues of wave propagation and constitutive relation of materials, and the dynamic response of structures under impact loads Based on the authors’ research and teaching experience as well as updated developments in the field Introduction to Impact Dynamics is the perfect textbook for graduate and postgraduate students, and will work as a reference for engineers in the fields of solid mechanics, automotive design, aerospace, mechanical, nuclear, marine, and defense. 

Table of Contents:
Preface xi Introduction to Impact Dynamics xiii Part 1 Stress Waves in Solids 1 1 Elastic Waves 3 1.1 Elastic Wave in a Uniform Circular Bar 3 1.1.1 The Propagation of a Compressive Elastic Wave 3 1.2 Types of Elastic Wave 6 1.2.1 Longitudinal Waves 6 1.2.2 Transverse Waves 7 1.2.3 Surface Wave (Rayleigh Wave) 7 1.2.4 Interfacial Waves 8 1.2.5 Waves in Layered Media (Love Waves) 8 1.2.6 Bending (Flexural) Waves 8 1.3 Reflection and Interaction of Waves 9 1.3.1 Mechanical Impedance 9 1.3.2 Waves When they Encounter a Boundary 10 1.3.3 Reflection and Transmission of 1D Longitudinal Waves 11 Questions 1 17 Problems 1 18 2 Elastic-Plastic Waves 19 2.1 One-Dimensional Elastic-Plastic Stress Wave in Bars 19 2.1.1 A Semi-Infinite Bar Made of Linear Strain-Hardening Material Subjected to a Step Load at its Free End 21 2.1.2 A Semi-Infinite Bar Made of Decreasingly Strain-Hardening Material Subjected to a Monotonically Increasing Load at its Free End 22 2.1.3 A Semi-Infinite Bar Made of Increasingly Strain-Hardening Material Subjected to a Monotonically Increasing Load at its Free End 23 2.1.4 Unloading Waves 25 2.1.5 Relationship Between Stress and Particle Velocity 26 2.1.6 Impact of a Finite-Length Uniform Bar Made of Elastic-Linear Strain-Hardening Material on a Rigid Flat Anvil 28 2.2 High-Speed Impact of a Bar of Finite Length on a Rigid Anvil (Mushrooming) 31 2.2.1 Taylor’s Approach 31 2.2.2 Hawkyard’s Energy Approach 36 Questions 2 38 Problems 2 38 Part 2 Dynamic Behavior of Materials under High Strain Rate 39 3 Rate-Dependent Behavior of Materials 41 3.1 Materials’ Behavior under High Strain Rates 41 3.2 High-Strain-Rate Mechanical Properties of Materials 44 3.2.1 Strain Rate Effect of Materials under Compression 44 3.2.2 Strain Rate Effect of Materials under Tension 44 3.2.3 Strain Rate Effect of Materials under Shear 47 3.3 High-Strain-Rate Mechanical Testing 48 3.3.1 Intermediate-Strain-Rate Machines 48 3.3.2 Split Hopkinson Pressure Bar (SHPB) 53 3.3.3 Expanding-Ring Technique 61 3.4 Explosively Driven Devices 62 3.4.1 Line-Wave and Plane-Wave Generators 63 3.4.2 Flyer Plate Accelerating 65 3.4.3 Pressure-Shear Impact Configuration 66 3.5 Gun Systems 67 3.5.1 One-Stage Gas Gun 67 3.5.2 Two-Stage Gas Gun 68 3.5.3 Electric Rail Gun 69 Problems 3 69 4 Constitutive Equations at High Strain Rates 71 4.1 Introduction to Constitutive Relations 71 4.2 Empirical Constitutive Equations 72 4.3 Relationship between Dislocation Velocity and Applied Stress 76 4.3.1 Dislocation Dynamics 76 4.3.2 Thermally Activated Dislocation Motion 81 4.3.3 Dislocation Drag Mechanisms 85 4.3.4 Relativistic Effects on Dislocation Motion 85 4.3.5 Synopsis 86 4.4 Physically Based Constitutive Relations 87 4.5 Experimental Validation of Constitutive Equations 90 Problems 4 90 Part 3 Dynamic Response of Structures to Impact and Pulse Loading 91 5 Inertia Effects and Plastic Hinges 93 5.1 Relationship between Wave Propagation and Global Structural Response 93 5.2 Inertia Forces in Slender Bars 94 5.2.1 Notations and Sign Conventions for Slender Links and Beams 95 5.2.2 Slender Link in General Motion 96 5.2.3 A Summary of the Methodology 102 5.3 Plastic Hinges in a Rigid-Plastic Free–Free Beam under Pulse Loading 102 5.3.1 Dynamic Response of Rigid-Plastic Beams 102 5.3.2 A Free–Free Beam Subjected to a Concentrated Step Force 104 5.3.3 Remarks on a Free–Free Beam Subjected To A Step Force At Its Midpoint 108 5.4 A Free Ring Subjected to a Radial Load 109 5.4.1 Comparison between a Supported Ring and a Free Ring 112 Questions 5 112 Problems 5 112 6 Dynamic Response of Cantilevers 115 6.1 Response to Step Loading 115 6.2 Response to Pulse Loading 120 6.2.1 Rectangular Pulse 120 6.2.2 General Pulse 125 6.3 Impact on a Cantilever 126 6.4 General Features of Traveling Hinges 133 Problems 6 136 7 Effects of Tensile and Shear Forces 139 7.1 Simply Supported Beams with no Axial Constraint at Supports 139 7.1.1 Phase I 139 7.1.2 Phase II 142 7.2 Simply Supported Beams with Axial Constraint at Supports 144 7.2.1 Bending Moment and Tensile Force in a Rigid-Plastic Beam 144 7.2.2 Beam with Axial Constraint at Support 146 7.2.3 Remarks 151 7.3 Membrane Factor Method in Analyzing the Axial Force Effect 151 7.3.1 Plastic Energy Dissipation and the Membrane Factor 151 7.3.2 Solution using the Membrane Factor Method 153 7.4 Effect of Shear Deformation 155 7.4.1 Bending-Only Theory 156 7.4.2 Bending-Shear Theory 158 7.5 Failure Modes and Criteria of Beams under Intense Dynamic Loadings 161 7.5.1 Three Basic Failure Modes Observed in Experiments 161 7.5.2 The Elementary Failure Criteria 163 7.5.3 Energy Density Criterion 165 7.5.4 A Further Study of Plastic Shear Failures 166 Questions 7 168 Problems 7 168 8 Mode Technique, Bound Theorems, and Applicability of the Rigid-Perfectly Plastic Model 169 8.1 Dynamic Modes of Deformation 169 8.2 Properties of Modal Solutions 170 8.3 Initial Velocity of the Modal Solutions 172 8.4 Mode Technique Applications 174 8.4.1 Modal Solution of the Parkes Problem 174 8.4.2 Modal Solution for a Partially Loaded Clamped Beam 176 8.4.3 Remarks on the Modal Technique 179 8.5 Bound Theorems for RPP Structures 180 8.5.1 Upper Bound of Final Displacement 180 8.5.2 Lower Bound of Final Displacement 181 8.6 Applicability of an RPP Model 183 Problems 8 186 9 Response of Rigid-Plastic Plates 187 9.1 Static Load-Carrying Capacity of Rigid-Plastic Plates 187 9.1.1 Load Capacity of Square Plates 188 9.1.2 Load Capacity of Rectangular Plates 190 9.1.3 Load-Carrying Capacity of Regular Polygonal Plates 192 9.1.4 Load-Carrying Capacity of Annular Plate Clamped at its Outer Boundary 194 9.1.5 Summary 196 9.2 Dynamic Deformation of Pulse-Loaded Plates 196 9.2.1 The Pulse Approximation Method 196 9.2.2 Square Plate Loaded by Rectangular Pulse 197 9.2.3 Annular Circular Plate Loaded by Rectangular Pulse Applied on its Inner Boundary 201 9.2.4 Summary 204 9.3 Effect of Large Deflection 204 9.3.1 Static Load-Carrying Capacity of Circular Plates In Large Deflection 205 9.3.2 Dynamic Response of Circular Plates with Large Deflection 209 Problems 9 210 10 Case Studies 213 10.1 Theoretical Analysis of Tensor Skin 213 10.1.1 Introduction to Tensor Skin 213 10.1.2 Static Response to Uniform Pressure Loading 213 10.1.3 Dynamic Response of Tensor Skin 217 10.1.4 Pulse Shape 218 10.2 Static and Dynamic Behavior of Cellular Structures 219 10.2.1 Static Response of Hexagonal Honeycomb 221 10.2.2 Static Response of Generalized Honeycombs 223 10.2.3 Dynamic Response of Honeycomb Structures 228 10.3 Dynamic Response of a Clamped Circular Sandwich Plate Subject to Shock Loading 233 10.3.1 An Analytical Model for the Shock Resistance of Clamped Sandwich Plates 234 10.3.2 Comparison of Finite Element and Analytical Predictions 238 10.3.3 Optimal Design of Sandwich Plates 239 10.4 Collision and Rebound of Circular Rings and Thin-Walled Spheres on Rigid Target 241 10.4.1 Collision and Rebound of Circular Rings 241 10.4.2 Collision and Rebound of Thin-Walled Spheres 249 10.4.3 Concluding Remarks 257 References 259 Index 265


Best Sellers


Product Details
  • ISBN-13: 9781118929841
  • Publisher: Wiley
  • Publisher Imprint: Wiley
  • Height: 178 mm
  • No of Pages: 288
  • Spine Width: 19 mm
  • Width: 251 mm
  • ISBN-10: 1118929845
  • Publisher Date: 23 Jan 2018
  • Binding: Hardback
  • Language: English
  • Returnable: Y
  • Weight: 584 gr


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Introduction to Impact Dynamics
Wiley -
Introduction to Impact Dynamics
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Introduction to Impact Dynamics

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!