44%
An Introduction to Machine Learning

An Introduction to Machine Learning

          
5
4
3
2
1

Out of Stock


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Notify me when this book is in stock
Add to Wishlist

About the Book

This textbook presents fundamental machine learning concepts in an easy to understand manner by providing practical advice, using straightforward examples, and offering engaging discussions of relevant applications. The main topics include Bayesian classifiers, nearest-neighbor classifiers, linear and polynomial classifiers, decision trees, neural networks, and support vector machines. Later chapters show how to combine these simple tools by way of “boosting,” how to exploit them in more complicated domains, and how to deal with diverse advanced practical issues. One chapter is dedicated to the popular genetic algorithms. This revised edition contains three entirely new chapters on critical topics regarding the pragmatic application of machine learning in industry. The chapters examine multi-label domains, unsupervised learning and its use in deep learning, and logical approaches to induction. Numerous chapters have been expanded, and the presentation of the material has been enhanced. The book contains many new exercises, numerous solved examples, thought-provoking experiments, and computer assignments for independent work.

Table of Contents:
1              A Simple Machine-Learning Task                                                               1 1.1         Training  Sets and Classifiers.......................................................................... 1 1.2         Minor Digression:  Hill-Climbing Search....................................................... 5 1.3         Hill Climbing in  Machine Learning................................................................ 9 1.4         The Induced Classifier’s Performance........................................................ 12 1.5         Some Difficulties with  Available Data......................................................... 14 1.6         Summary and Historical Remarks............................................................... 18 1.7         Solidify Your Knowledge.............................................................................. 19 2              Probabilities:  Bayesian Classifiers                                                                22 2.1         The Single-Attribute Case............................................................................. 22 2.2         Vectors  of Discrete Attributes..................................................................... 27 2.3         Probabilities of Rare Events:  Exploiting the   Expert’s Intuition............. 29 2.4         How  to Handle Continuous Attributes....................................................... 35 2.5         Gaussian “Bell” Function:  A  Standard pdf................................................. 38 2.6         Approximating PDFs with Sets  of Gaussians............................................ 40 2.7         Summary and Historical Remarks............................................................... 43 2.8         Solidify Your Knowledge.............................................................................. 46 3              Similarities:  Nearest-Neighbor Classifiers                                                 49 3.1         The k-Nearest-Neighbor Rule...................................................................... 49 3.2         Measuring Similarity...................................................................................... 52 3.3         Irrelevant  Attributes and Scaling Problems............................................... 56 3.4         Performance Considerations........................................................................ 60 3.5         Weighted Nearest Neighbors....................................................................... 63 3.6         Removing Dangerous Examples.................................................................. 65 3.7         Removing Redundant Examples.................................................................. 68 3.8         Summary and Historical Remarks............................................................... 71 3.9         Solidify Your Knowledge.............................................................................. 72         4              Inter-Class Boundaries: Linear and Polynomial Classifiers                                                                  75 4.1         The Essence..................................................................................................... 75 4.2         The Additive Rule:  Perceptron Learning.................................................... 79 4.3         The  Multiplicative  Rule:  WINNOW............................................................ 85 4.4         Domains with More than  Two Classes........................................................ 88 4.5         Polynomial Classifiers..................................................................................... 91 4.6         Specific Aspects of Polynomial Classifiers................................................... 93 4.7         Numerical Domains and Support Vector Machines................................... 97 4.8         Summary and Historical Remarks.............................................................. 100 4.9         Solidify Your Knowledge............................................................................. 101 5              Artificial Neural Networks                                                                            105 5.1         Multilayer Perceptrons as Classifiers.......................................................... 105 5.2         Neural Network’s Error............................................................................... 110 5.3         Backpropagation of Error........................................................................... 111 5.4         Special Aspects of Multilayer Perceptrons................................................ 117 5.5         Architectural Issues...................................................................................... 121 5.6         Radial Basis Function Networks................................................................. 123 5.7         Summary and Historical Remarks.............................................................. 126 5.8         Solidify Your Knowledge............................................................................. 128 6              Decision  Trees                                                                                                    130 6.1         Decision Trees 6.2         Induction of Decision Trees........................................................................ 134 6.3         How Much Information Does an   Attribute Convey?............................... 137 6.4         Binary Split of a   Numeric Attribute.......................................................... 142 6.5         Pruning.......................................................................................................... 144 6.6         Converting the Decision Tree  into Rules.................................................. 149 6.7         Summary and Historical Remarks.............................................................. 151 6.8         Solidify Your Knowledge............................................................................. 153 7              Computational Learning Theory                                                                  157 7.1         PAC Learning................................................................................................. 157 7.2         Examples  of PAC  Learnability.................................................................... 161 7.3         Some Practical and Theoretical Consequences......................................... 164 7.4         VC-Dimension and Learnability................................................................. 166 7.5         Summary and Historical Remarks.............................................................. 169 7.6         Exercises and Thought Experiments......................................................... 170         8              A  Few  Instructive Applications                                                                   173 8.1         Character Recognition................................................................................ 173 8.2         Oil-Spill Recognition.................................................................................... 177 8.3         Sleep Classification...................................................................................... 181 8.4         Brain-Computer Interface.......................................................................... 185 8.5         Medical Diagnosis........................................................................................ 189 8.6         Text Classification........................................................................................ 192 8.7         Summary and Historical Remarks............................................................ 194 8.8         Exercises and Thought Experiments........................................................ 195 9              Induction  of Voting Assemblies                                                                  198 9.1         Bagging.......................................................................................................... 198 9.2         Schapire’s Boosting..................................................................................... 201 9.3         Adaboost:  Practical Version of Boosting................................................. <205 9.4         Variations on the  Boosting Theme........................................................... 210 9.5         Cost-Saving Benefits of  the Approach...................................................... 213 9.6         Summary and Historical Remarks............................................................ 215 9.7         Solidify Your Knowledge............................................................................ 216 10     Some  Practical  Aspects  to Know About                                                   219 10.1     A Learner’s Bias.......................................................................................... 219 10.2     Imbalanced Training Sets........................................................................... 223 10.3     Context-Dependent Domains..................................................................... 228 10.4     Unknown Attribute Values......................................................................... 231 10.5     Attribute Selection....................................................................................... 234 10.6     Miscellaneous............................................................................................... 237 10.7     Summary and Historical Remarks............................................................ 238 10.8     Solidify Your Knowledge............................................................................ 240 11     Performance Evaluation                                                                                 243 11.1     Basic Performance Criteria........................................................................ 243 11.2     Precision and Recall.................................................................................... 247 11.3     Other Ways  to Measure Performance..................................................... 252 11.4     Learning Curves and  Computational Costs............................................. 255 11.5     Methodologies of Experimental Evaluation............................................. 258 11.6     Summary and Historical Remarks............................................................ 261 11.7     Solidify Your Knowledge............................................................................ 263         12     Statistical Significance                                                                                     266 12.1     Sampling a Population................................................................................ 266 12.2     Benefiting from the  Normal Distribution................................................ 271 12.3     Confidence Intervals................................................................................... 275 12.4     Statistical Evaluation of  a Classifier.......................................................... 277 12.5     Another Kind of  Statistical Evaluation..................................................... 280 12.6     Comparing Machine-Learning Techniques.............................................. 281 12.7     Summary and Historical Remarks............................................................ 284 12.8     Solidify Your Knowledge............................................................................ 285< 13     Induction  in Multi-Label Domains                                                              287 13.1     Classical Machine Learning in Multi-Label Domains................................................................................... 287 13.2     Treating  Each  Class Separately: Binary Relevance......................................................................................... 290 13.3     Classifier Chains........................................................................................... 293 13.4     Another Possibility: Stacking..................................................................... 296 13.5     A Note on Hierarchically  Ordered Classes............................................... 298 13.6     Aggregating the Classes.............................................................................. 301 13.7     Criteria for Performance Evaluation........................................................ 304 13.8     Summary and Historical Remarks............................................................ 307 13.9     Solidify Your Knowledge............................................................................ 308 14     Unsupervised Learning                                                                                    311 14.1     Cluster Analysis........................................................................................... 311 14.2     A Simple Algorithm: k-Means.................................................................... 315 14.3     More Advanced Versions  of k-Means...................................................... 321 14.4     Hierarchical Aggregation............................................................................ 323 14.5     Self-Organizing Feature Maps: Introduction........................................... 326 14.6     Some Important Details.............................................................................. 329 14.7     Why Feature Maps?.................................................................................... 332 14.8     Summary and Historical Remarks............................................................ 334 14.9     Solidify Your Knowledge............................................................................ 335 15     Classifiers in the Form   of Rulesets                                                           338 15.1     A Class Described  By Rules....................................................................... 338 15.2     Inducing Rulesets by  Sequential Covering............................................... 341 15.3     Predicates and Recursion.......................................................................... 344 15.4     More Advanced Search Operators............................................................ 347         15.5     Summary and Historical Remarks.............................................................. 349 15.6     Solidify Your Knowledge............................................................................ 350 16     The Genetic Algorithm<                                                                                    352< 16.1     The Baseline Genetic Algorithm................................................................ 352 16.2     Implementing the Individual Modules...................................................... 355 16.3     Why it Works............................................................................................... 359 16.4     The Danger of  Premature Degeneration................................................. 362 16.5     Other Genetic Operators............................................................................ 364 16.6     Some Advanced Versions........................................................................... 367 16.7     Selections in k-NN Classifiers..................................................................... 370 16.8     Summary and Historical Remarks............................................................ 373 16.9     Solidify Your Knowledge............................................................................ 374 17     Reinforcement Learning                                                                                 376 17.1     How  to Choose the Most  Rewarding Action........................................... 376 17.2     States and Actions in  a Game.................................................................... 379 17.3     The SARSA Approach................................................................................. 383 17.4     Summary and Historical Remarks............................................................ 384 17.5     Solidify Your Knowledge............................................................................ 384 Index                                                                                                                           395


Best Sellers


Product Details
  • ISBN-13: 9783319639123
  • Publisher: Springer International Publishing AG
  • Publisher Imprint: Springer International Publishing AG
  • Edition: Revised edition
  • Language: English
  • Returnable: Y
  • Weight: 6682 gr
  • ISBN-10: 3319639129
  • Publisher Date: 08 Sep 2017
  • Binding: Hardback
  • Height: 235 mm
  • No of Pages: 348
  • Spine Width: 21 mm
  • Width: 155 mm


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
An Introduction to Machine Learning
Springer International Publishing AG -
An Introduction to Machine Learning
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

An Introduction to Machine Learning

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA