Home > Computing and Information Technology > Databases > Data mining > Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2017, Skopje, Macedonia, September 18–22, 2017, Proceedings, Part II(10535 Lecture Notes in Computer Science)
36%
Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2017, Skopje, Macedonia, September 18–22, 2017, Proceedings, Part II(10535 Lecture Notes in Computer Science)

Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2017, Skopje, Macedonia, September 18–22, 2017, Proceedings, Part II(10535 Lecture Notes in Computer Science)

          
5
4
3
2
1

Available


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

The three volume proceedings LNAI 10534 – 10536 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2017, held in Skopje, Macedonia, in September 2017.  The total of 101 regular papers presented in part I and part II was carefully reviewed and selected from 364 submissions; there are 47 papers in the applied data science, nectar and demo track.  The contributions were organized in topical sections named as follows: Part I: anomaly detection; computer vision; ensembles and meta learning; feature selection and extraction; kernel methods; learning and optimization, matrix and tensor factorization; networks and graphs; neural networks and deep learning. Part II: pattern and sequence mining; privacy and security; probabilistic models and methods; recommendation; regression; reinforcement learning; subgroup discovery; time series and streams; transfer and multi-task learning; unsupervised and semisupervised learning. Part III: applied data science track; nectar track; and demo track.

Table of Contents:
Pattern and Sequence Mining.- BeatLex: Summarizing and Forecasting Time Series with Patterns.- Behavioral Constraint Template-Based Sequence Classification.- Efficient Sequence Regression by Learning Linear Models in All-Subsequence Space.- Subjectively Interesting Connecting Trees.- Privacy and Security.- Malware Detection by Analysing Encrypted Network Traffic with Neural Networks.- PEM: Practical Differentially Private System for Large-Scale Cross-Institutional Data Mining.- Probabilistic Models and Methods.- Bayesian Heatmaps: Probabilistic Classification with Multiple Unreliable Information Sources.- Bayesian Inference for Least Squares Temporal Difference Regularization.- Discovery of Causal Models that Contain Latent Variables through Bayesian Scoring of Independence Constraints.- Labeled DBN learning with community structure knowledge.- Multi-view Generative Adversarial Networks.- Online Sparse Collapsed Hybrid Variational-Gibbs Algorithm for Hierarchical Dirichlet Process Topic Models.- PAC-Bayesian Analysis for a two-step Hierarchical Multiview Learning Approach.- Partial Device Fingerprints.- Robust Multi-view Topic Modeling by Incorporating Detecting Anomalies.- Recommendation.- A Regularization Method with Inference of Trust and Distrust in Recommender Systems.- A Unified Contextual Bandit Framework for Long- and Short-Term Recommendations.- Perceiving the Next Choice with Comprehensive Transaction Embeddings for Online Recommendation.- Regression.- Adaptive Skip-Train Structured Regression for Temporal Networks.- ALADIN: A New Approach for Drug-Target Interaction Prediction.- Co-Regularised Support Vector Regression.- Online Regression with Controlled Label Noise Rate.- Reinforcement Learning.- Generalized Inverse Reinforcement Learning with Linearly Solvable MDP.- Max K-armed bandit: On the ExtremeHunter algorithm and beyond.- Variational Thompson Sampling for Relational Recurrent Bandits.- Subgroup Discovery.- Explaining Deviating Subsetsthrough Explanation Networks.- Flash points: Discovering exceptional pairwise behaviors in vote or rating data.- Time Series and Streams.- A Multiscale Bezier-Representation for Time Series that Supports Elastic Matching.- Arbitrated Ensemble for Time Series Forecasting.- Cost Sensitive Time-series Classification.- Cost-Sensitive Perceptron Decision Trees for Imbalanced Drifting Data Streams.- Efficient Temporal Kernels between Feature Sets for Time Series Classification.- Forecasting and Granger modelling with non-linear dynamical dependencies.- Learning TSK Fuzzy Rules from Data Streams.- Non-Parametric Online AUC Maximization.- On-line Dynamic Time Warping for Streaming Time Series.- PowerCast: Mining and Forecasting Power Grid Sequences.- UAPD: Predicting Urban Anomalies from Spatial-Temporal Data.- Transfer and Multi-Task Learning.- A Novel Rating Pattern Transfer Model for Improving Non-Overlapping Cross-Domain Collaborative Filtering.- Distributed Multi-task Learning for SensorNetwork.- Learning task structure via sparsity grouped multitask learning.- Lifelong Learning with Gaussian Processes.- Personalized Tag Recommendation for Images Using Deep Transfer Learning.- Ranking based Multitask Learning of Scoring Functions.- Theoretical Analysis of Domain Adaptation with Optimal Transport.- TSP: Learning Task-Speci_c Pivots for Unsupervised Domain Adaptation.- Unsupervised and Semisupervised Learning.- k2-means for fast and accurate large scale clustering.- A Simple Exponential Family Framework for Zero-Shot Learning.- DeepCluster: A General Clustering Framework based on Deep Learning.- Multi-view Spectral Clustering on Conflicting Views.- Pivot-based Distributed K-Nearest Neighbor Mining.


Best Sellers


Product Details
  • ISBN-13: 9783319712451
  • Publisher: Springer International Publishing AG
  • Publisher Imprint: Springer International Publishing AG
  • Edition: 1st ed. 2017
  • Language: English
  • Returnable: Y
  • Series Title: Lecture Notes in Artificial Intelligence
  • Sub Title: European Conference, ECML PKDD 2017, Skopje, Macedonia, September 18–22, 2017, Proceedings, Part II
  • Width: 155 mm
  • ISBN-10: 3319712454
  • Publisher Date: 10 Jan 2018
  • Binding: Paperback
  • Height: 235 mm
  • No of Pages: 866
  • Series Title: 10535 Lecture Notes in Computer Science
  • Spine Width: 45 mm
  • Weight: 466 gr


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2017, Skopje, Macedonia, September 18–22, 2017, Proceedings, Part II(10535 Lecture Notes in Computer Science)
Springer International Publishing AG -
Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2017, Skopje, Macedonia, September 18–22, 2017, Proceedings, Part II(10535 Lecture Notes in Computer Science)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2017, Skopje, Macedonia, September 18–22, 2017, Proceedings, Part II(10535 Lecture Notes in Computer Science)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA