Home > Computing and Information Technology > Computer science > Image processing > Medical Image Computing and Computer Assisted Intervention – MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part I(13431 Lecture Notes in Computer Science)
36%
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part I(13431 Lecture Notes in Computer Science)

Medical Image Computing and Computer Assisted Intervention – MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part I(13431 Lecture Notes in Computer Science)

          
5
4
3
2
1

Available


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

The eight-volume set LNCS 13431, 13432, 13433, 13434, 13435, 13436, 13437, and 13438 constitutes the refereed proceedings of the 25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022, which was held in Singapore in September 2022. The 574 revised full papers presented were carefully reviewed and selected from 1831 submissions in a double-blind review process. The papers are organized in the following topical sections: Part I: Brain development and atlases; DWI and tractography; functional brain networks; neuroimaging; heart and lung imaging; dermatology; Part II: Computational (integrative) pathology; computational anatomy and physiology; ophthalmology; fetal imaging; Part III: Breast imaging; colonoscopy; computer aided diagnosis; Part IV: Microscopic image analysis; positron emission tomography; ultrasound imaging; video data analysis; image segmentation I; Part V: Image segmentation II; integration of imaging with non-imaging biomarkers; Part VI: Image registration; image reconstruction; Part VII: Image-Guided interventions and surgery; outcome and disease prediction; surgical data science; surgical planning and simulation; machine learning – domain adaptation and generalization; Part VIII: Machine learning – weakly-supervised learning; machine learning – model interpretation; machine learning – uncertainty; machine learning theory and methodologies.  

Table of Contents:
Brain Development and Atlases.- Progression models for imaging data with Longitudinal Variational Auto Encoders.- Boundary-Enhanced Self-Supervised Learning for Brain Structure Segmentation.- Domain-Prior-Induced Structural MRI Adaptation for Clinical Progression Prediction of Subjective Cognitive Decline.- 3D Global Fourier Network for Alzheimer’s Disease Diagnosis using Structural MRI.- CASHformer: Cognition Aware SHape Transformer for Longitudinal Analysis.- Interpretable differential diagnosis for Alzheimer’s disease and Frontotemporal dementia.- Is a PET all you need? A multi-modal study for Alzheimer’s disease using 3D CNNs.- Unsupervised Representation Learning of Cingulate Cortical Folding Patterns.- Feature robustness and sex differences in medical imaging: a case study in MRI-based Alzheimer’s disease detection.- Extended Electrophysiological Source Imaging with Spatial Graph Filters.- DWI and Tractography.- Hybrid Graph Transformer for Tissue Microstructure Estimation with Undersampled Diffusion MRI Data.- Atlas-powered deep learning (ADL) - application to diffusion weighted MRI.- One-Shot Segmentation of Novel White Matter Tracts via Extensive Data Augmentation.- Accurate Corresponding Fiber Tract Segmentation via FiberGeoMap Learner.- An adaptive network with extragradient for diffusion MRI-based microstructure estimation.- Shape-based features of white matter fiber-tracts associated with outcome in Major Depression Disorder.- White Matter Tracts are Point Clouds: Neuropsychological Score Prediction and Critical Region Localization via Geometric Deep Learning.- Segmentation of Whole-brain Tractography: A Deep Learning Algorithm Based on 3D Raw Curve Points.- TractoFormer: A Novel Fiber-level Whole Brain Tractography Analysis Framework Using Spectral Embedding and Vision Transformers.- Multi-site Normative Modeling of Diffusion Tensor Imaging Metrics Using Hierarchical Bayesian Regression.- Functional Brain Networks.- Contrastive Functional Connectivity Graph Learning for Population-based fMRI Classification.- Joint Graph Convolution for Analyzing Brain Structural and Functional Connectome.- Decoding Task Sub-type States with Group Deep Bidirectional Recurrent Neural Network.- Hierarchical Brain Networks Decomposition via Prior Knowledge Guided Deep Belief Network.- Interpretable signature of consciousness in resting-state functional network brain activity.- Nonlinear Conditional Time-varying Granger Causality of Task fMRI via Deep Stacking Networks and Adaptive Convolutional Kernels.- fMRI Neurofeedback Learning Patterns are Predictive of Personal and Clinical Traits.- Multi-head Attention-based Masked Sequence Model for Mapping Functional Brain Networks.- Dual-HINet: Dual Hierarchical Integration Network of Multigraphs for Connectional Brain Template Learning.- RefineNet: An Automated Framework to Generate Task and Subject-Specific Brain Parcellations for Resting-State fMRI Analysis.- Modelling Cycles in Brain Networks with the Hodge Laplacian.- Predicting Spatio-Temporal Human Brain Response Using fMRI.- Revealing Continuous Brain Dynamical Organization with Multimodal Graph Transformer.- Explainable Contrastive Multiview Graph Representation of Brain, Mind, and Behavior.- Embedding Human Brain Function via Transformer.- How Much to Aggregate: Learning Adaptive Node-wise Scales on Graphs for Brain Networks.- Combining multiple atlases to estimate data-driven mappings between functional connectomes using optimal transport.- The Semi-constrained Network-Based Statistic (scNBS): integrating local and global information for brain network inference.- Unified Embeddings of Structural and Functional Connectome via a Function-Constrained Structural Graph Variational Auto-Encoder.- Neuroimaging.- Characterization of brain activity patterns across states of consciousness based on variational auto-encoders.- Conditional VAEs for confound removal and normative modelling of neurodegenerative diseases.- Semi-supervised learning with data harmonisation for biomarker discovery from resting state fMRI.- Cerebral Microbleeds Detection Using a 3D Feature Fused Region Proposal Network with Hard Sample Prototype Learning.- Brain-Aware Replacements for Supervised Contrastive Learning in Detection of Alzheimer’s Disease.- Heart and Lung Imaging.- AANet: Artery-Aware Network for Pulmonary Embolism Detection in CTPA Images.- Siamese Encoder-based Spatial-Temporal Mixer for Growth Trend Prediction of Lung Nodules on CT Scans.- What Makes for Automatic Reconstruction of Pulmonary Segments.- CFDA: Collaborative Feature Disentanglement and Augmentation for Pulmonary Airway Tree Modeling of COVID-19 CTs.- Decoupling Predictions in Distributed Learning for Multi-Center Left Atrial MRI Segmentation.- Scribble-Supervised Medical Image Segmentation via Dual-Branch Network and Dynamically Mixed Pseudo Labels Supervision.- Diffusion Deformable Model for 4D Temporal Medical Image Generation.- SAPJNet: Sequence-Adaptive Prototype-Joint Network for Small Sample Multi-Sequence MRI Diagnosis.- Evolutionary Multi-objective Architecture Search Framework: Application to COVID-19 3D CT Classification.- Detecting Aortic Valve Pathology from the 3-Chamber Cine Cardiac MRI View.- CheXRelNet: An Anatomy-Aware Model for Tracking Longitudinal Relationships between Chest X-Rays.- Reinforcement learning for active modality selection during diagnosis.- Ensembled Prediction of Rheumatic Heart Disease from Ungated Doppler Echocardiography Acquired in Low-Resource Settings.- Attention mechanisms for physiological signal deep learning: which attention should we take?.- Computer-aided Tuberculosis Diagnosis with Attribute Reasoning Assistance.- Multimodal Contrastive Learning for Prospective Personalized Estimation of CT Organ Dose.- RTN: Reinforced Transformer Network for Coronary CT Angiography Vessel-level Image Quality Assessment.- A Comprehensive Study of Modern Architectures and Regularization Approaches on CheXpert5000.-LSSANet: A Long Short Slice-Aware Network for Pulmonary Nodule Detection.- Consistency-based Semi-supervised Evidential Active Learning for Diagnostic Radiograph Classification.- Self-Rating Curriculum Learning for Localization and Segmentation of Tuberculosis on Chest Radiograph.- Rib Suppression in Digital Chest Tomosynthesis.- Multi-Task Lung Nodule Detection in Chest Radiographs with a Dual Head Network.- Dermatology.- Data-Driven Deep Supervision for Skin Lesion Classification.- Out-of-Distribution Detection for Long-tailed and Fine-grained Skin Lesion Images.- FairPrune: Achieving Fairness Through Pruning for Dermatological Disease Diagnosis.- Reliability-aware Contrastive Self-ensembling for Semi-supervised Medical Image Classification.


Best Sellers


Product Details
  • ISBN-13: 9783031164309
  • Publisher: Springer International Publishing AG
  • Publisher Imprint: Springer International Publishing AG
  • Height: 235 mm
  • No of Pages: 768
  • Series Title: 13431 Lecture Notes in Computer Science
  • Sub Title: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part I
  • Width: 155 mm
  • ISBN-10: 303116430X
  • Publisher Date: 15 Sep 2022
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Spine Width: 41 mm
  • Weight: 1110 gr


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part I(13431 Lecture Notes in Computer Science)
Springer International Publishing AG -
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part I(13431 Lecture Notes in Computer Science)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Medical Image Computing and Computer Assisted Intervention – MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part I(13431 Lecture Notes in Computer Science)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA