Home > Sciences & Environment > Earth sciences > Meteorology and climatology > Meteorological Measurements and Instrumentation: (Advancing Weather and Climate Science)
Meteorological Measurements and Instrumentation: (Advancing Weather and Climate Science)

Meteorological Measurements and Instrumentation: (Advancing Weather and Climate Science)

          
5
4
3
2
1

Available


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

This book describes the fundamental scientific principles underlying high quality instrumentation used for environmental measurements. It discusses a wide range of in situ sensors employed in practical environmental monitoring and, in particular, those used in surface based measurement systems. It also considers the use of weather balloons to provide a wealth of upper atmosphere data. To illustrate the technologies in use it includes many examples of real atmospheric measurements in typical and unusual circumstances, with a discussion of the electronic signal conditioning,  data acquisition considerations and data processing principles necessary for reliable measurements. This also allows the long history of atmospheric measurements to be placed in the context of the requirements of modern climate science, by building the physical science appreciation of the instrumental record and looking forward to new and emerging sensor and recording technologies.

Table of Contents:
Series Foreword xi Preface xiii Acknowledgements xv Disclaimer xvii 1 Introduction 1 1.1 The instrumental age 2 1.2 Measurements and the climate record 2 1.3 Clouds and rainfall 3 1.4 Standardisation of air temperature measurements 4 1.5 Upper air measurements 5 1.5.1 Manned balloon ascents 6 1.5.2 Self-reporting upper air instruments 7 1.6 Scope and structure 8 2 Principles of Measurement and Instrumentation 9 2.1 Instruments and measurement systems 9 2.1.1 Instrument response characterisation 10 2.1.2 Measurement quality 12 2.2 Instrument response time 14 2.2.1 Response to a step-change 14 2.2.2 Response to an oscillation 15 2.3 Deriving the standard error 18 2.3.1 Sample mean 18 2.3.2 Standard error 20 2.3.3 Quoting results 20 2.4 Calculations combining uncertainties 21 2.4.1 Sums and differences 21 2.4.2 Products and quotients 22 2.4.3 Uncertainties from functions 23 2.5 Calibration experiments 23 3 Electronics and Analogue Signal Processing 27 3.1 Voltage measurements 28 3.2 Signal conditioning 28 3.2.1 Operational amplifiers 29 3.2.2 Operational amplifier fundamentals 30 3.2.3 Signal amplification 31 3.2.4 Buffer amplifiers 33 3.2.5 Inverting amplifier 33 3.2.6 Line driving 35 3.2.7 Power supplies 36 3.3 Voltage signals 38 3.3.1 Electrometers 38 3.3.2 Microvolt amplifier 40 3.4 Current measurement 41 3.4.1 Current to voltage conversion 42 3.4.2 Photocurrent amplifier 43 3.4.3 Logarithmic measurements 44 3.4.4 Calibration currents 45 3.5 Resistance measurement 46 3.5.1 Thermistor resistance measurement 46 3.5.2 Resistance bridge methods 47 3.6 Oscillatory signals 50 3.6.1 Oscillators 50 3.6.2 Phase-locked loops 53 3.6.3 Frequency to voltage conversion 54 3.7 Physical implementation 54 4 Data Acquisition Systems and Initial Data Analysis 57 4.1 Data acquisition 57 4.1.1 Count data 59 4.1.2 Frequency data 60 4.1.3 Interval data 60 4.1.4 Voltage data 61 4.1.5 Sampling 63 4.1.6 Time synchronisation 66 4.2 Custom data logging systems 66 4.2.1 Data acquisition cards 67 4.2.2 Microcontroller systems 67 4.2.3 Automatic Weather Stations 68 4.3 Management of data files 69 4.3.1 Data logger programming 69 4.3.2 Data transfer 70 4.3.3 Data file considerations 71 4.4 Preliminary data examination 72 4.4.1 In situ calibration 72 4.4.2 Time series 73 4.4.3 Irregular and intermittent time series 75 4.4.4 Further data analysis 75 5 Temperature 77 5.1 The Celsius temperature scale 77 5.2 Liquid in glass thermometry 78 5.2.1 Fixed interval temperature scales 78 5.2.2 Liquid-in-glass thermometers 79 5.3 Electrical temperature sensors 80 5.3.1 Thermocouple 81 5.3.2 Semiconductor 81 5.3.3 Thermistor 82 5.3.4 Metal resistance thermometry 83 5.4 Resistance thermometry considerations 86 5.4.1 Thermistor measurement 87 5.4.2 Platinum resistance measurement 89 5.5 Thermometer exposure 90 5.5.1 Radiation error of air temperature sensors 90 5.5.2 Thermometer radiation screens 91 5.5.3 Radiation errors on screen temperatures 93 5.5.4 Lag times in screen temperatures 95 5.5.5 Screen condition 98 5.5.6 Modern developments in screens 99 5.6 Surface and below-surface temperature measurements 99 5.6.1 Surface temperatures 99 5.6.2 Soil temperatures 100 5.6.3 Ground heat flux density 100 6 Humidity 103 6.1 Water vapour as a gas 103 6.2 Physical measures of humidity 105 6.2.1 Absolute humidity 106 6.2.2 Specific humidity 106 6.2.3 Relative humidity 107 6.2.4 Dew point and wet bulb temperature 107 6.3 Hygrometers and their operating principles 109 6.3.1 Mechanical 109 6.3.2 Chemical 111 6.3.3 Electronic 111 6.3.4 Spectroscopic 112 6.3.5 Radio refractive index 113 6.3.6 Dew point meter 114 6.3.7 Psychrometer 114 6.4 Practical psychrometers 116 6.4.1 Effect of temperature uncertainties 118 6.4.2 Ventilation effects 118 6.4.3 Freezing of the wet bulb 120 6.5 Hygrometer calibration using salt solutions 121 6.6 Comparison of hygrometry techniques 122 7 Atmospheric Pressure 123 7.1 Introduction 123 7.2 Barometers 123 7.2.1 Liquid barometers 124 7.2.2 Mercury barometers 125 7.2.3 Hypsometer 127 7.2.4 Aneroid barometers 127 7.2.5 Precision aneroid barometers 128 7.2.6 Flexible diaphragm sensors 129 7.2.7 Vibrating cylinder barometer 129 7.3 Corrections to barometers 129 7.3.1 Sea level correction 130 7.3.2 Wind speed corrections 131 8 Wind Speed and Direction 133 8.1 Introduction 133 8.2 Types of anemometer 133 8.2.1 Pressure plate anemometers 133 8.2.2 Pressure tube anemometer 134 8.2.3 Cup anemometers 134 8.2.4 Propeller anemometer 136 8.2.5 Hot sensor anemometer 137 8.2.6 Sonic anemometer 139 8.3 Wind direction 141 8.3.1 Wind vanes 142 8.3.2 Horizontal wind components 144 8.3.3 Multi-component research anemometers 146 8.4 Anemometer exposure 146 8.4.1 Anemometer deficiencies 146 8.5 Wind speed from kite tether tension 148 9 Radiation 151 9.1 Introduction 151 9.2 Solar geometry 154 9.2.1 Orbital variations 154 9.2.2 Diurnal variation 155 9.2.3 Solar time corrections 155 9.2.4 Day length calculation 156 9.2.5 Irradiance calculation 157 9.3 Shortwave radiation instruments 158 9.3.1 Thermopile pyranometer 158 9.3.2 Pyranometer theory 159 9.3.3 Silicon pyranometers 162 9.4 Pyrheliometers 162 9.5 Diffuse solar radiation measurement 164 9.5.1 Occulting disk method 164 9.5.2 Shade ring method 165 9.5.3 Reflected shortwave radiation 168 9.5.4 Fluctuations in measured radiation 169 9.6 Reference solar radiation instruments 171 9.6.1 Cavity radiometer 172 9.6.2 Secondary pyrheliometers 172 9.7 Longwave instruments 173 9.7.1 Pyrradiometer theory 173 9.7.2 Pyrradiometer calibration 174 9.7.3 Pyrgeometer measurements 175 9.7.4 Commercial pyrradiometers 175 9.7.5 Radiation thermometry 177 9.8 Sunshine duration 178 9.8.1 Campbell–Stokes sunshine recorder 180 9.8.2 Electronic sensors 181 10 Clouds, Precipitation and Atmospheric Electricity 183 10.1 Introduction 183 10.2 Visual range 183 10.2.1 Point visibility meters 184 10.2.2 Transmissometers 185 10.2.3 Present weather sensors 185 10.3 Cloud base measurements 186 10.4 Rain gauges 187 10.4.1 Tilting siphon 188 10.4.2 Tipping bucket 188 10.4.3 Disdrometers 191 10.5 Atmospheric electricity 191 10.5.1 Potential Gradient instrumentation 191 10.5.2 Variability in the Potential Gradient 192 10.5.3 Lightning detection 193 11 Upper Air Instruments 195 11.1 Radiosondes 195 11.1.1 Sounding balloons 196 11.2 Radiosonde technology 197 11.2.1 Pressure sensor 199 11.2.2 Temperature and humidity sensors 200 11.2.3 Wind measurements from position information 201 11.2.4 Data telemetry 202 11.2.5 Radio transmitter 203 11.3 Uncertainties in radiosonde measurements 204 11.3.1 Response time 204 11.3.2 Radiation errors 204 11.3.3 Wet-bulbing 206 11.3.4 Location error 207 11.3.5 Telemetry errors 208 11.4 Specialist radiosondes 209 11.4.1 Cloud electrification 209 11.4.2 Ozone 209 11.4.3 Radioactivity and cosmic rays 210 11.4.4 Radiation 210 11.4.5 Turbulence 211 11.4.6 Supercooled liquid water 211 11.4.7 Atmospheric aerosol 212 11.5 Aircraft measurements 212 11.5.1 Air temperature 212 11.5.2 Wind 212 11.5.3 Pressure 213 11.5.4 Altitude 213 11.6 Small robotic aircraft 213 12 Further Methods for Environmental Data Analysis 215 12.1 Physical models 215 12.1.1 Surface energy balance 215 12.1.2 Turbulent quantities and eddy covariance 217 12.1.3 Soil temperature model 218 12.1.4 Vertical wind profile 220 12.2 Solar radiation models 222 12.2.1 Langley’s solar radiation method 222 12.2.2 Surface solar radiation: Holland’s model 224 12.3 Statistical models 225 12.3.1 Histograms and distributions 226 12.3.2 Statistical tests 226 12.3.3 Wind gusts 229 12.4 Ensemble averaging 229 12.4.1 Solar radiation variation 230 12.4.2 Pressure tides 231 12.4.3 Carnegie curve 231 12.5 Spectral methods 233 12.5.1 Power spectra 233 12.5.2 Micrometeorological power spectra 235 12.6 Conclusion 237 Appendix A Writing a Brief Instrumentation Paper 239 A.1 Scope of an instrument paper 239 A.2 Structure of an instrument paper 239 A.2.1 Paper title 239 A.2.2 Abstract 240 A.2.3 Keywords 240 A.2.4 Motivation 240 A.2.5 Description 240 A.2.6 Comparison 241 A.2.7 Figures 241 A.2.8 Summary 242 A.2.9 Acknowledgements 242 A.3 Submission and revisions 242 Appendix B Anemometer Coordinate Rotations 243 References 247 Index 253


Best Sellers


Product Details
  • ISBN-13: 9781118745809
  • Publisher: John Wiley and Sons Ltd
  • Publisher Imprint: Wiley-Blackwell
  • Depth: 25
  • Language: English
  • Returnable: N
  • Spine Width: 20 mm
  • Width: 177 mm
  • ISBN-10: 1118745809
  • Publisher Date: 26 Dec 2014
  • Binding: Hardback
  • Height: 252 mm
  • No of Pages: 288
  • Series Title: Advancing Weather and Climate Science
  • Weight: 680 gr


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Meteorological Measurements and Instrumentation: (Advancing Weather and Climate Science)
John Wiley and Sons Ltd -
Meteorological Measurements and Instrumentation: (Advancing Weather and Climate Science)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Meteorological Measurements and Instrumentation: (Advancing Weather and Climate Science)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA