10%
Microwave Circuit Design Using Linear and Nonlinear Techniques

Microwave Circuit Design Using Linear and Nonlinear Techniques

          
5
4
3
2
1

Out of Stock


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Notify me when this book is in stock
Add to Wishlist

About the Book

The ultimate handbook on microwave circuit design with CAD. Full of tips and insights from seasoned industry veterans, Microwave Circuit Design offers practical, proven advice on improving the design quality of microwave passive and active circuits-while cutting costs and time. Covering all levels of microwave circuit design from the elementary to the very advanced, the book systematically presents computer-aided methods for linear and nonlinear designs used in the design and manufacture of microwave amplifiers, oscillators, and mixers. Using the newest CAD tools, the book shows how to design transistor and diode circuits, and also details CAD's usefulness in microwave integrated circuit (MIC) and monolithic microwave integrated circuit (MMIC) technology. Applications of nonlinear SPICE programs, now available for microwave CAD, are described. State-of-the-art coverage includes microwave transistors (HEMTs, MODFETs, MESFETs, HBTs, and more), high-power amplifier design, oscillator design including feedback topologies, phase noise and examples, and more. The techniques presented are illustrated with several MMIC designs, including a wideband amplifier, a low-noise amplifier, and an MMIC mixer. This unique, one-stop handbook also features a major case study of an actual anticollision radar transceiver, which is compared in detail against CAD predictions; examples of actual circuit designs with photographs of completed circuits; and tables of design formulae.

Table of Contents:
FOREWORD xv ROBERT A. PUCEL PREFACE xix 1 RF MICROWAVE SYSTEMS 1 1.1 Introduction 1 1.2 Maxwell’s Equations 10 1.3 RF Wireless Microwave Millimeter-Wave Applications 12 1.4 Frequency Bands, Modes, and Waveforms of Operation 17 1.5 Analog and Digital Requirements 18 1.6 Elementary Definitions 20 1.7 Basic RF Transmitters and Receivers 26 1.8 Modern CAD for Nonlinear Circuit Analysis 29 1.9 Dynamic Load Line 30 References 31 Bibliography 32 Problems 33 2 LUMPED AND DISTRIBUTED ELEMENTS 35 2.1 Introduction 35 2.2 Transition from RF to Microwave Circuits 35 2.3 Parasitic Effects on Lumped Elements 38 2.4 Distributed Elements 45 2.5 Hybrid Element: Helical Coil 46 References 47 Bibliography 49 Problems 50 3 ACTIVE DEVICES 51 3.1 Introduction 51 3.2 Diodes 53 3.3 Microwave Transistors 103 3.4 Heterojunction Bipolar Transistor 144 3.5 Microwave FET 150 References 183 Bibliography 187 Problems 190 4 TWO-PORT NETWORKS 192 4.1 Introduction 192 4.2 Two-Port Parameters 193 4.3 S Parameters 197 4.4 S Parameters from SPICE Analysis 198 4.5 Stability 199 4.6 Power Gains, Voltage Gain, and Current Gain 202 4.7 Three-Ports 210 4.8 Derivation of Transducer Power Gain 213 4.9 Differential S Parameters 215 4.10 Twisted-Wire Pair Lines 218 4.11 Low-Noise and High-Power Amplifier Design 221 4.12 Low-Noise Amplifier Design Examples 224 References 233 Bibliography 234 Problems 234 5 IMPEDANCE MATCHING 241 5.1 Introduction 241 5.2 Smith Charts and Matching 241 5.3 Impedance Matching Networks 249 5.4 Single-Element Matching 250 5.5 Two-Element Matching 251 5.6 Matching Networks Using Lumped Elements 252 5.7 Matching Networks Using Distributed Elements 253 5.8 Bandwidth Constraints for Matching Networks 257 References 267 Bibliography 268 Problems 268 6 MICROWAVE FILTERS 273 6.1 Introduction 273 6.2 Low-Pass Prototype Filter Design 274 6.3 Transformations 279 6.4 Transmission Line Filters 291 6.5 Exact Designs and CAD Tools 305 6.6 Real-Life Filters 305 References  309 Bibliography 309 Problems 310 7 NOISE IN LINEAR TWO-PORTS 311 7.1 Introduction 311 7.2 Signal-to-Noise Ratio 313 7.3 Noise Figure Measurements 315 7.4 Noise Parameters and Noise Correlation Matrix 317 7.5 Noisy Two-Port Description 326 7.6 Noise Figure of Cascaded Networks 332 7.7 Influence of External Parasitic Elements 334 7.8 Noise Circles 338 7.9 Noise Correlation in Linear Two-Ports Using Correlation Matrices 340 7.10 Noise Figure Test Equipment 343 7.11 How to Determine Noise Parameters 345 7.12 Calculation of Noise Properties of Bipolar and FETs 346 7.13 Bipolar Transistor Noise Model in T Configuration 359 7.14 The GaAs FET Noise Model 367 References 381 Bibliography 383 Problems 385 8 SMALL- AND LARGE-SIGNAL AMPLIFIER DESIGN 388 8.1 Introduction 388 8.2 Single-Stage Amplifier Design 390 8.3 Frequency Multipliers 416 8.4 Design Example of 1.9-GHz PCS and 2.1-GHz W-CDMA Amplifiers 420 8.5 Stability Analysis and Limitations 422 References 426 Bibliography 429 Problems 431 9 POWER AMPLIFIER DESIGN 433 9.1 Introduction 433 9.2 Device Modeling and Characterization 434 9.3 Optimum Loading 464 9.4 Single-Stage Power Amplifier Design 466 9.5 Multistage Design 472 9.6 Power-Distributed Amplifiers 480 9.7 Class of Operation 500 9.8 Power Amplifier Stability 509 9.9 Amplifier Linearization Methods 512 References 514 Bibliography 518 Problems 519 10 OSCILLATOR DESIGN 520 10.1 Introduction 520 10.2 Compressed Smith Chart 525 10.3 Series or Parallel Resonance 526 10.4 Resonators 528 10.5 Two-Port Oscillator Design 544 10.6 Negative Resistance from Transistor Model 550 10.7 Oscillator Q and Output Power 559 10.8 Noise in Oscillators: Linear Approach 563 10.9 Analytic Approach to Optimum Oscillator Design Using S Parameters  591 10.10 Nonlinear Active Models for Oscillators  605 10.11 Oscillator Design Using Nonlinear Cad Tools  617 10.12 Microwave Oscillators Performance  631 10.13 Design of an Oscillator Using Large-Signal Y Parameters  634 10.14 Example for Large-Signal Design Based on Bessel Functions  637 10.15 Design Example for Best Phase Noise and Good Output Power  641 10.16 CAD Solution for Calculating Phase Noise in Oscillators  650 10.17 Validation Circuits  666 10.18 Analytical Approach for Designing Efficient Microwave FET and Bipolar Oscillators (Optimum Power)  674 References  703 Bibliography  707 Problems  718 11 MICROWAVE MIXER DESIGN 724 11.1 Introduction  724 11.2 Diode Mixer Theory  728 11.3 Single-Diode Mixers  743 11.4 Single-Balanced Mixers  753 11.5 Double-Balanced Mixers  769 11.6 FET Mixer Theory  794 11.7 Balanced FET Mixers  818 11.8 Special Mixer Circuits  832 11.9 Using Modern CAD Tools  843 11.10 Mixer Noise  850 References  863 Bibliography  866 Problems  867 12 RF SWITCHES AND ATTENUATORS 869 12.1 pin Diodes  869 12.2 pin Diode Switches  872 12.3 pin Diode Attenuators  881 12.4 FET Switches  886 References  889 Bibliography  890 13 MICROWAVE COMPUTER-AIDED WORKSTATIONS FOR MMIC REQUIREMENTS 891 13.1 Introduction  891 13.2 Gallium Arsenide MMIC Foundries: Role of CAD  897 13.3 Yield-Driven Design  901 13.4 Designing Nonlinear Circuits Using the Harmonic Balance Method  905 13.5 Programmable Microwave Tuning System  914 13.6 Introduction to MMIC Considering Layout Effects  920 13.7 GaAs MMIC Layout Software  927 13.8 Practical Design Example  930 13.9 CAD Applications  935 Bibliography  956 Appendix A BIP: GUMMEL–POON BIPOLAR TRANSISTOR MODEL 959 Appendix B LEVEL 3 MOSFET 966 Appendix C NOISE PARAMETERS OF GaAs MESFETs 969 Appendix D DERIVATIONS FOR UNILATERAL GAIN SECTION 982 Appendix E VECTOR REPRESENTATION OF TWO-TONE INTERMODULATION PRODUCTS 985 Appendix F PASSIVE MICROWAVE ELEMENTS 1005 INDEX 1027


Best Sellers


Product Details
  • ISBN-13: 9780471414797
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: Wiley-Interscience
  • Edition: 2 Rev ed
  • Language: English
  • Returnable: N
  • Spine Width: 62 mm
  • Width: 187 mm
  • ISBN-10: 0471414794
  • Publisher Date: 29 Jul 2005
  • Binding: Hardback
  • Height: 258 mm
  • No of Pages: 1080
  • Series Title: English
  • Weight: 2048 gr


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Microwave Circuit Design Using Linear and Nonlinear Techniques
John Wiley & Sons Inc -
Microwave Circuit Design Using Linear and Nonlinear Techniques
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Microwave Circuit Design Using Linear and Nonlinear Techniques

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA