Home > Mathematics and Science Textbooks > Mathematics > Algebra > Module Theory: Endomorphism rings and direct sum decompositions in some classes of modules(167 Progress in Mathematics)
37%
Module Theory: Endomorphism rings and direct sum decompositions in some classes of modules(167 Progress in Mathematics)

Module Theory: Endomorphism rings and direct sum decompositions in some classes of modules(167 Progress in Mathematics)

          
5
4
3
2
1

Available


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

This expository monograph was written for three reasons. Firstly, we wanted to present the solution to a problem posed by Wolfgang Krull in 1932 [Krull 32]. He asked whether what we now call the "Krull-Schmidt Theorem" holds for ar­ tinian modules. The problem remained open for 63 years: its solution, a negative answer to Krull's question, was published only in 1995 (see [Facchini, Herbera, Levy and Vamos]). Secondly, we wanted to present the answer to a question posed by Warfield in 1975 [Warfield 75]. He proved that every finitely pre­ sented module over a serial ring is a direct sum of uniserial modules, and asked if such a decomposition was unique. In other words, Warfield asked whether the "Krull-Schmidt Theorem" holds for serial modules. The solution to this problem, a negative answer again, appeared in [Facchini 96]. Thirdly, the so­ lution to Warfield's problem shows interesting behavior, a rare phenomenon in the history of Krull-Schmidt type theorems. Essentially, the Krull-Schmidt Theorem holds for some classes of modules and not for others. When it does hold, any two indecomposable decompositions are uniquely determined up to a permutation, and when it does not hold for a class of modules, this is proved via an example. For serial modules the Krull-Schmidt Theorem does not hold, but any two indecomposable decompositions are uniquely determined up to two permutations. We wanted to present such a phenomenon to a wider math­ ematical audience.

Table of Contents:
1 Basic Concepts.- 1.1 Semisimple rings and modules.- 1.2 Local and semilocal rings.- 1.3 Serial rings and modules.- 1.4 Pure exact sequences.- 1.5 Finitely definable subgroups and pure-injective modules.- 1.6 The category (RFP, Ab).- 1.7 ?-pure-injective modules.- 1.8 Notes on Chapter 1.- 2 The Krull-Schmidt-Remak-Azumaya Theorem.- 2.1 The exchange property.- 2.2 Indecomposable modules with the exchange property.- 2.3 Isomorphic refinements of finite direct sum decompositions.- 2.4 The Krull-Schmidt-Remak-Azumaya Theorem.- 2.5 Applications.- 2.6 Goldie dimension of a modular lattice.- 2.7 Goldie dimension of a module.- 2.8 Dual Goldie dimension of a module.- 2.9 ?-small modules and ?-closed classes.- 2.10 Direct sums of ?-small modules.- 2.11 The Loewy series.- 2.12 Artinian right modules over commutative or right noetherian rings.- 2.13 Notes on Chapter 2.- 3 Semiperfect Rings.- 3.1 Projective covers and lifting idempotents.- 3.2 Semiperfect rings.- 3.3 Modules over semiperfect rings.- 3.4 Finitely presented and Fitting modules.- 3.5 Finitely presented modules over serial rings.- 3.6 Notes on Chapter 3.- 4 Semilocal Rings.- 4.1 The Camps-Dicks Theorem.- 4.2 Modules with semilocal endomorphism ring.- 4.3 Examples.- 4.4 Notes on Chapter 4.- 5 Serial Rings.- 5.1 Chain rings and right chain rings.- 5.2 Modules over artinian serial rings.- 5.3 Nonsingular and semihereditary serial rings.- 5.4 Noetherian serial rings.- 5.5 Notes on Chapter 5.- 6 Quotient Rings.- 6.1 Quotient rings of arbitrary rings.- 6.2 Nil subrings of right Goldie rings.- 6.3 Reduced rank.- 6.4 Localization in chain rings.- 6.5 Localizable systems in a serial ring.- 6.6 An example.- 6.7 Prime ideals in serial rings.- 6.8 Goldie semiprime ideals.- 6.9 Diagonalization of matrices.- 6.10 Ore sets inserial rings.- 6.11 Goldie semiprime ideals and maximal Ore sets.- 6.12 Classical quotient ring of a serial ring.- 6.13 Notes on Chapter 6.- 7 Krull Dimension and Serial Rings.- 7.1 Deviation of a poset.- 7.2 Krull dimension of arbitrary modules and rings.- 7.3 Nil subrings of rings with right Krull dimension.- 7.4 Transfinite powers of the Jacobson radical.- 7.5 Structure of serial rings of finite Krull dimension.- 7.6 Notes on Chapter 7.- 8 Krull-Schmidt Fails for Finitely Generated Modules and Artinian Modules.- 8.1 Krull-Schmidt fails for finitely generated modules.- 8.2 Krull-Schmidt fails for artinian modules.- 8.3 Notes on Chapter 8.- 9 Biuniform Modules.- 9.1 First properties of biuniform modules.- 9.2 Some technical lemmas.- 9.3 A sufficient condition.- 9.4 Weak Krull-Schmidt Theorem for biuniform modules.- 9.5 Krull-Schmidt holds for finitely presented modules over chain rings.- 9.6 Krull-Schmidt fails for finitely presented modules over serial rings.- 9.7 Further examples of biuniform modules of type 1.- 9.8 Quasi-small uniserial modules.- 9.9 A necessary condition for families of uniserial modules.- 9.10 Notes on Chapter 9.- 10 ?-pure-injective Modules and Artinian Modules.- 10.1 Rings with a faithful ?-pure-injective module.- 10.2 Rings isomorphic to endomorphism rings of artinian modules.- 10.3 Distributive modules.- 10.4 ?-pure-injective modules over chain rings.- 10.5 Homogeneous ?-pure-injective modules.- 10.6 Krull dimension and ?-pure-injective modules.- 10.7 Serial rings that are endomorphism rings of artinian modules.- 10.8 Localizable systems and ?-pure-injective modules over serial rings.- 10.9 Notes on Chapter 10.- 11 Open Problems.


Best Sellers


Product Details
  • ISBN-13: 9783764359089
  • Publisher: Birkhauser Verlag AG
  • Publisher Imprint: Birkhauser Verlag AG
  • Edition: 1998 ed.
  • Language: English
  • Returnable: Y
  • Spine Width: 19 mm
  • Weight: 607 gr
  • ISBN-10: 3764359080
  • Publisher Date: 16 Jun 1998
  • Binding: Hardback
  • Height: 235 mm
  • No of Pages: 288
  • Series Title: 167 Progress in Mathematics
  • Sub Title: Endomorphism rings and direct sum decompositions in some classes of modules
  • Width: 155 mm


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Module Theory: Endomorphism rings and direct sum decompositions in some classes of modules(167 Progress in Mathematics)
Birkhauser Verlag AG -
Module Theory: Endomorphism rings and direct sum decompositions in some classes of modules(167 Progress in Mathematics)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Module Theory: Endomorphism rings and direct sum decompositions in some classes of modules(167 Progress in Mathematics)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA