close menu
Bookswagon-24x7 online bookstore
close menu
My Account
Home > Science, Technology & Agriculture > Technology: general issues > A Multi-Objective Optimization Approach for Sensor Network Design.: (English)
A Multi-Objective Optimization Approach for Sensor Network Design.: (English)

A Multi-Objective Optimization Approach for Sensor Network Design.: (English)

          
5
4
3
2
1

Out of Stock


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Notify me when this book is in stock
Add to Wishlist

About the Book

Many sensor network design problems are characterized by the need to optimize multiple conflicting objectives. However, existing approaches generally focus on a single objective (ignoring the others), or combine multiple objectives into a single function to be optimized, to facilitate the application of classical optimization algorithms. This restricts their ability and constrains their usefulness to the network designer. A much more appropriate and natural approach is to address multiple objectives simultaneously, applying recently developed multi-objective evolutionary algorithms (MOEAs) in solving sensor network design problems. This dissertation describes and illustrates this approach by modeling two sensor network design problems (mobile agent routing and sensor placement), as multi-objective optimization problems, developing the appropriate objective functions and discussing the tradeoffs between them. One of the main contributions of this dissertation is the development of a new MOEA called evolutionary multi-objective crowding algorithm ( EMOCA). The key new approach in this algorithm is to use a diversity-emphasizing probabilistic approach in determining whether an offspring individual is considered in the replacement selection phase, along with the use of a non-domination ranking scheme. EMOCA is evaluated using nine benchmark multi-objective optimization problems, and shown to produce non-dominated solutions with significant diversity, outperforming three state-of-the-art multi-objective evolutionary algorithms on most of the test problems. The first part of the application section of the dissertation formulates and solves the multi-objective mobile agent routing problem in wireless sensor networks. A recent approach for data fusion in wireless sensor networks involves the use of mobile agents that selectively visit the sensors and incrementally fuse the data, thereby eliminating the unnecessary transmission of irrelevant or non-critical data. The order of sensors visited along the route determines the quality of the fused data and the communication cost. We model the mobile agent routing problem as a multi-objective optimization problem, maximizing the total detected signal energy while minimizing the energy consumption and path loss. Simulation results show that this problem can be solved successfully using multi-objective evolutionary algorithms such as EMOCA and non dominated sorting genetic algorithm - II (NSGA-II). We also demonstrate that EMOCA and NSGA-II outperform the classical multi-objective optimization approach called the weight based genetic algorithm (WGA). In WGA, a genetic algorithm is employed to optimize a weighted combination of the normalized values of the objectives. In the second part of the application section of the dissertation, we formulate and solve the sensor placement problem for two specific application scenarios: (1) Energy efficient target detection; (2) Distributed detection of air pollutants in indoor environments subject to a constraint on the sensor network lifetime. The sensor placement problem for energy efficient target detection is modeled as a multiobjective optimization problem that addresses multiple optimization criteria including the probability of detection, energy dissipated in the network, and the optimal number of sensors to be deployed. We consider data-level fusion and decision fusion models for evaluating the multiple objectives. We solve the sensor placement problem using EMOCA and NSGA-II. Simulation results show that EMOCA and NSGA-II outperform WGA. Many sensor network design problems have constraints on energy consumption, data accuracy, and data latency....


Best Seller

| | See All


Product Details
  • ISBN-13: 9781243979759
  • Publisher: Proquest, Umi Dissertation Publishing
  • Publisher Imprint: Proquest, Umi Dissertation Publishing
  • Height: 254 mm
  • No of Pages: 142
  • Series Title: English
  • Weight: 295 gr
  • ISBN-10: 1243979755
  • Publisher Date: 10 Sep 2011
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Spine Width: 9 mm
  • Width: 203 mm


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
A Multi-Objective Optimization Approach for Sensor Network Design.: (English)
Proquest, Umi Dissertation Publishing -
A Multi-Objective Optimization Approach for Sensor Network Design.: (English)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

A Multi-Objective Optimization Approach for Sensor Network Design.: (English)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    | | See All


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA