Home > Sciences & Environment > Earth sciences > Geology, geomorphology and the lithosphere > Multiscale Geomechanics: From Soil to Engineering Projects
Multiscale Geomechanics: From Soil to Engineering Projects

Multiscale Geomechanics: From Soil to Engineering Projects

          
5
4
3
2
1

Available


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Add to Wishlist

About the Book

This book addresses the latest issues in multiscale geomechanics. Written by leading experts in the field as a tribute to Jean Biarez (1927-2006), it can be of great use and interest to researchers and engineers alike. A brief introduction describes how a major school of soil mechanics came into being through the exemplary teaching by one man. Biarez's life-long work consisted of explaining the elementary mechanisms governing soil constituents in order to enhance understanding of the underlying scientific laws which control the behavior of constructible sites and to incorporate these scientific advancements into engineering practices. He innovated a multiscale approach of passing from the discontinuous medium formed by individual grains to an equivalent continuous medium. The first part of the book examines the behavior of soils at the level of their different constituents and at the level of their interaction. Behavior is then treated at the scale of the soil sample. The second part deals with soil mechanics from the vantage point of the construction project. It highlights Biarez's insightful adoption of the Finite Element Codes and illustrates, through numerous construction examples, his methodology and approach based on the general framework he constructed for soil behavior, constantly enriched by comparing in situ measurements with calculated responses of geostructures.

Table of Contents:
Preface  xi Acknowledgments  xv Chapter 1. Jean Biarez: His Life and Work  1 Jean-Louis BORDES, Jean-Louis FAVRE and Daniel GRIMM 1.1. Early years and arrival in Grenoble  1 1.2. From Grenoble to Paris  4 1.3. The major research interests of Jean Biarez  8 1.4. Research and teaching   9 1.5. Conclusion  13 Chapter 2. From Particle to Material Behavior: the Paths Chartered by Jean Biarez 15 Bernard CAMBOU and Cécile NOUGUIER-LEHON 2.1. Introduction 15 2.2. The available tools, the variables analyzed and limits of the proposed analyses 16 2.3. Analysis of geometric anisotropy  18 2.4. Analysis of the distribution of contact forces in a granular material 21 2.5. Analysis of local arrays  24 2.6. Particle breakage  27 2.7. Conclusion  32 2.8. Bibliography  32 Chapter 3. Granular Materials in Civil Engineering: Recent Advances in the Physics of Their Mechanical Behavior and Applications to Engineering Works        35 Etienne FROSSARD 3.1. Behavior resulting from energy dissipation by friction      37 3.1.1. Introduction 37 3.1.2. Fundamentals        38 3.1.3. Main practical consequences 43 3.1.4. Conclusions   52 3.2. Influence of grain breakage on the behavior of granular materials 53 3.2.1. Introduction to the grain breakage phenomenon      53 3.2.2. Scale effect in shear strength 56 3.3. Practical applications to construction design         63 3.3.1. A new method for rational assessment of rockfill shear strength envelope       63 3.3.2. Incidence of scale effect on rockfill slope stability      65 3.3.3. Scale effects on deformation features          70 3.4. Conclusions 78 3.5. Bibliography  79 Chapter 4. Waste Rock Behavior at High Pressures: Dimensioning High Waste Rock Dumps   83 Edgar BARD, María EUGENIA ANABALÓN and José CAMPAÑA 4.1. Introduction 83 4.2. Development of new laboratory equipment for testing coarse materials 84 4.2.1. Triaxial and oedometric equipment at the IDIEM 85 4.3. Mining rock waste       86 4.3.1. In situ grain size distribution 86 4.3.2. Analyzed waste rock      87 4.4. Characterization of mechanical behavior of the waste rock 88 4.4.1. Oedometric tests       88 4.4.2. Triaxial tests   89 4.4.3. Oedometric test results 90 4.4.4. Triaxial test results   94 4.5. Evolution of density  102 4.6. Stability analysis and design considerations         104 4.7. Operation considerations      106 4.7.1. Basal drainage system 106 4.7.2. Water management   107 4.7.3. Foundation conditions   107 4.7.4. Effects of rain and snow     108 4.7.5. Effects of in situ leaching on waste rock         108 4.7.6. Designing for closure  109 4.8. Conclusions 109 4.9. Acknowledgements  110 4.10. Bibliography         110 Chapter 5. Models by Jean Biarez for the Behavior of Clean Sands and Remolded Clays at Large Strains 113 Jean-Louis FAVRE and Mahdia HATTAB 5.1. Introduction 113 5.2. Biarez’s model for the oedometer test  115 5.3. Perfect plasticity state and critical void ratio         118 5.4. Normally and overconsolidated isotropic loading  122 5.4.1. Analogy between sands and clays  122 5.4.2. Normally consolidated state (ISL)  123 5.4.3. Overconsolidated state (Cs)    124 5.5. The drained triaxial path for sands and clays         126 5.5.1. The reference behavior 126 5.5.2. The mathematical model    127 5.6. The undrained triaxial path for sands 128 5.6.1. Simplified Roscoe formula for undrained consolidated soils   129 5.6.2. Modeling of the maxima under the right M on the plan q – p'  130 5.7. Standard behavior for undrained sands 132 5.7.1. Normalization by the theoretical overconsolidation stress p'iC  132 5.7.2. Perfect plasticity normalization of the curves in the (q – ε1) plane and pore pressure variation        133 5.7.3. Initial stress p'0 normalization in the (q – p) plane      133 5.8. The triaxial behavior of “lumpy” sands    134 5.8.1. “Lump” sands        134 5.8.2. The Roscoe model applied to lump sands 135 5.8.3. Synthesis of several lump sand behaviors 136 5.9. A new model to analyze the oedometer’s path  138 5.9.1. Burland’s model       138 5.9.2. Comparison of models and mixed model         141 5.9.3. Burland’s model in (IL – logσ'v) Biarez’s space       144 5.10. “Destructuration” of clayey sediments 144 5.11. Conclusion   145 5.12. Examples of manuscript notes    147 5.13. Bibliography         149 Chapter 6. The Concept of Effective Stress in Unsaturated Soils 153 Said TAIBI, Jean-Marie FLEUREAU, Sigit HADIWARDOYO, Hanène SOULI and António GOMES CORREIA 6.1. Introduction 153 6.2. Microstructural model for unsaturated porous media 160 6.3. Material and methods       164 6.3.1. Material and preparation of samples  164 6.3.2. Experimental devices and test procedures   165 6.3.3. Normalization of data 170 6.4. Experimental results  171 6.4.1. Isotropic compression paths   171 6.4.2. Deviatoric compression paths 72 6.4.3. Small strain behavior     173 6.5. Interpretation of results using the effective stress concept     174 6.5.1. Interpretation of large strain triaxial tests         175 6.5.2. Interpretation of small strain modulus measurements     176 6.6. Conclusions 177 6.7. Acknowledgements 178 6.8. Bibliography     178 Chapter 7. A Microstructural Model for Soils and Granular Materials  183 Pierre-Yves HICHER 7.1. Introduction 183 7.2. The micro-structural model     185 7.2.1. Inter-particle behavior    186 7.2.2. Stress−strain relationship 189 7.2.3. Model parameters      190 7.3. Results of numerical simulation on Hostun sand        191 7.3.1. Drained triaxial tests      191 7.3.2. Undrained triaxial tests     195 7.4. Model extension to clayey materials 196 7.4.1. Remolded clays   198 7.4.2. Natural clays    200 7.5. Unsaturated granular materials    204 7.6. Summary and conclusion     214 7.7. Bibliography       216 Chapter 8. Modeling Landslides with a Material Instability Criterion 221 Florent PRUNIER, Sylvain LIGNON, Farid LAOUAFA and Félix DARVE 8.1. Introduction 221 8.2. Study of the second-order work criterion          223 8.2.1. Analytical study 223 8.2.2. Physical interpretation 227 8.3. Petacciato landslide modeling  229 8.3.1. Site presentation       229 8.3.2. Description of the model used   231 8.3.3. Landslide computation  234 8.4. Conclusion  238 8.5. Bibliography   240 Chapter 9. Numerical Modeling: An Efficient Tool for Analyzing the Behavior of Constructions      243 Arezou MODARESSI-FARAHMAND-RAZAVI 9.1. Notations 243 9.2. Introduction 247 9.3. Modeling soil behavior 248 9.3.1. Main characteristics of the soil’s mechanical behavior    248 9.3.2. Constitutive models used for computation 253 9.3.3. Simplified model       254 9.3.4. Generalizing the simplified model  262 9.3.5. Mechanical behavior of non-saturated soil 265 9.3.6. Loading/unloading definition in plasticity 272 9.3.7. Multimechanism model     274 9.4. Parameter identification strategy for the ECP model   275 9.4.1. Classification and identification of the ECP model parameters 276 9.4.2. Directly measurable parameters 279 9.4.3. Parameters that are not directly measurable        288 9.4.4. Parameters defining the initial state 290 9.4.5. Application of parameter identification strategy      293 9.5. Influence of constitutive behavior on structural response 299 9.5.1. Retaining walls     299 9.5.2. Vertically loaded piles 304 9.5.3. Earth and rockfill dams     312 9.6. Conclusions 318 9.7. Acknowledgments       319 9.8. Appendix  319 9.9. Bibliography  323 Chapter 10. Evaluating Seismic Stability of Embankment Dams    333 Jean-Jacques FRY 10.1. Introduction 333 10.1.1. A tribute to Jean Biarez 333 10.1.2. Definitions    334 10.2. Observed seismic performance 335 10.2.1. Earthquake performance of gravity dams 335 10.2.2. Earthquake performance of buttress dams        336 10.2.3. Earthquake performance of arch dams     337 10.2.4. Earthquake performance of hydraulic fills        338 10.2.5. Earthquake performance of tailing dams  339 10.2.6. Earthquake performance of road embankments and levees   339 10.2.7. Earthquake performance of river hydroelectric embankments 339 10.2.8. Earthquake performance of small earth dams       340 10.2.9. Earthquake performance of large earth dams  342 10.2.10. Earthquake performance of large zoned dams with rockfill 344 10.2.11. Earthquake performance of concrete face rockfill dams 344 10.2.12. Dynamic performance of physical models       345 10.2.13. Assessment of seismic damage on dams 345 10.2.14. Major seismic damage of large concrete dams 346 10.2.15. Seismic damage of large embankment dams       347 10.2.16. Delayed or indirect consequences of an earthquake     347 10.3. Method for analyzing seismic risk 348 10.3.1. Seismic classification of dams in France 348 10.4. Evaluation of seismic hazard 350 10.4.1. Scenarios for dimensioning a particular situation      350 10.4.2. Choice of seismic levels 350 10.4.3. Choice of the seismic characteristics         351 10.4.4. Choice of accelerographs    352 10.5. Re-evaluation of seismic stability   355 10.5.1. Maximum risk associated with seismic loading: liquefaction 355 10.5.2. A recommended step-by-step methodology  357 10.5.3. Identification        357 10.5.4. Pseudo-static analysis of stability 358 10.5.5. Pseudo-static analysis of displacement         358 10.5.6. Analysis of the liquefaction risk  362 10.5.7. Coupled non-linear analysis 365 10.5.8. Analysis of post-seismic stability 367 10.5.9. Assessment  367 10.6. Semi-coupled modeling of liquefaction          368 10.6.1. Objectives  368 10.6.2. Constitutive model      368 10.6.3. Failure criterion       369 10.6.4. Shear strain law       370 10.6.5. Volumetric strain law: liquefaction          372 10.6.6. Model implementation     373 10.6.7. Model qualification in the case of the San Fernando Dam failure      373 10.6.8. Model application to fluvial dikes  380 10.7. Bibliography         387 List of Authors   393 Index 395


Best Sellers


Product Details
  • ISBN-13: 9781848212466
  • Publisher: ISTE Ltd and John Wiley & Sons Inc
  • Publisher Imprint: ISTE Ltd and John Wiley & Sons Inc
  • Depth: 25
  • Language: English
  • Returnable: N
  • Sub Title: From Soil to Engineering Projects
  • Width: 165 mm
  • ISBN-10: 1848212461
  • Publisher Date: 25 Nov 2011
  • Binding: Hardback
  • Height: 241 mm
  • No of Pages: 396
  • Spine Width: 28 mm
  • Weight: 748 gr


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Multiscale Geomechanics: From Soil to Engineering Projects
ISTE Ltd and John Wiley & Sons Inc -
Multiscale Geomechanics: From Soil to Engineering Projects
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Multiscale Geomechanics: From Soil to Engineering Projects

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA