Home > History and Archaeology > History > Na-ion Batteries
18%
Na-ion Batteries

Na-ion Batteries

          
5
4
3
2
1

International Edition


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

This book covers both the fundamental and applied aspects of advanced Na-ion batteries (NIB) which have proven to be a potential challenger to Li-ion batteries. Both the chemistry and design of positive and negative electrode materials are examined. In NIB, the electrolyte is also a crucial part of the batteries and the recent research, showing a possible alternative to classical electrolytes – with the development of ionic liquid-based electrolytes – is also explored. Cycling performance in NIB is also strongly associated with the quality of the electrode-electrolyte interface, where electrolyte degradation takes place; thus, Na-ion Batteries details the recent achievements in furthering knowledge of this interface. Finally, as the ultimate goal is commercialization of this new electrical storage technology, the last chapters are dedicated to the industrial point of view, given by two startup companies, who developed two different NIB chemistries for complementary applications and markets.

Table of Contents:
Introduction xi Laure MONCONDUIT and Laurence CROGUENNEC Chapter 1. Layered NaMO2 for the Positive Electrode 1 Shinichi KOMABA and Kei KUBOTA 1.1. Research history of layered transition metal oxides as electrode materials for Na-ion batteries until 2009 1 1.2. Crystal structures of layered materials 4 1.2.1. Crystal structures of synthesizable NaxMO2 4 1.2.2. Structural changes of O3-NaMO2 by Na extraction 7 1.2.3. Structural changes of P2-NaxMO2 by Na extraction 9 1.3. O3-type layered materials 10 1.3.1. NaMO2 (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni) 10 1.3.2. O3-Na[M,M’]O2 (M, M’ = transition metals) 19 1.3.3. Moist air stability of O3-NaMO2 and surface coating 24 1.4. P2-type layered materials 26 1.4.1. Practical issues of P2-type materials for Na-ion batteries 26 1.4.2. P2-Na2/3[Mn,Co,M]O2 28 1.4.3. P2-Na2/3[Mn,Fe,M]O2 29 1.4.4. P2-Na2/3[Ni,Mn,M]O2 30 1.5. Summary and prospects 32 1.6. Acknowledgments 33 1.7. References 33 Chapter 2. Polyanionic-Type Compounds as Positive Electrodes for Na-ion batteries 47 Long H. B. NGUYEN, Fan CHEN, Christian MASQUELIER and Laurence CROGUENNEC 2.1. Introduction 47 2.1.1. Oxides and polyanionic frameworks as positive electrodes for sodium ion-batteries 47 2.1.2. NASICONs and Na3V2(PO4)2F3 50 2.2. NASICON structures as model frameworks in sodium-ion battery applications 53 2.2.1. Compositional diversity from solid electrolytes to electrodes 53 2.2.2. NASICON-typed materials as electrodes for Na batteries 55 2.2.3. Na3V2(PO4)3 (NVP) 58 2.3. Na3V2(PO4)2F3 used as a model framework in sodium-ion battery applications 69 2.3.1. Structural description and compositional diversity 69 2.3.2. Na3V2(PO4)2F3: a promising active material for positive electrodes in NIBs 72 2.3.3. Oxygen substitution in Na3V2(PO4)2F3 and its effects on the electrochemical performance of substituted phases 75 2.3.4. Paving the way toward Na3V2(PO4)2F3 with superior performance 80 2.4. Conclusion and perspectives 86 2.5. References 87 Chapter 3. Hard Carbon for Na-ion Batteries: From Synthesis to Performance and Storage Mechanism 101 Carolina DEL MAR SAAVEDRA RIOS, Adrian BEDA, Loic SIMONIN and Camélia MATEI GHIMBEU 3.1. Introduction 101 3.2. What is a hard carbon? 103 3.3. Hard carbon synthesis and microstructure 105 3.3.1. Synthetic precursors-based hard carbon synthesis 107 3.3.2. Bio-polymers derived hard carbon synthesis 110 3.3.3. Biomass-based hard carbon synthesis 112 3.4. Hard carbon characteristics 116 3.4.1. Hard carbon structure 116 3.4.2. Hard carbon porosity 118 3.4.3. Hard carbon surface chemistry 121 3.4.4. Hard carbon structural defects 124 3.5. Electrochemical performance 126 3.5.1. Materials performance 126 3.5.2. Full Na-ion system performance 131 3.5.3. Sodium insertion mechanisms in hard carbon 132 3.6. Conclusion 135 3.7. References 136 Chapter 4. Non-Carbonaceous Negative Electrodes in Sodium Batteries 147 Vincent GABAUDAN, Moulay Tahar SOUGRATI, Lorenzo STIEVANO and Laure MONCONDUIT 4.1. Introduction 147 4.2. Insertion materials 149 4.2.1. Insertion anodes based on titanium oxide and titanates 149 4.2.2. Insertion anodes based on transition metal chalcogenides 157 4.2.3. Insertion MXene-based anodes 159 4.2.4. Insertion organic anodes 161 4.3. Negative electrode materials based on electrochemical alloying with sodium 162 4.3.1. Silicon and germanium 163 4.3.2. Tin 165 4.3.3. Phosphorus 166 4.3.4. Antimony 170 4.3.5. Other post-transition metal elements 173 4.4. Negative electrode materials based on conversion reactions 174 4.4.1. Reaction mechanisms of CM 177 4.4.2. Approaches toward efficient anode CM for NIB 181 4.5. Conclusion 185 4.6. References 186 Chapter 5. Electrolytes for Sodium Batteries 205 Faezeh MAKHLOOGHIAZAD, Cristina POZO-GONZALO, Patrik JOHANSSON and Maria FORSYTH 5.1. Introduction 205 5.2. Liquid and solid electrolytes for sodium batteries 207 5.2.1. Organic liquid electrolytes 208 5.2.2. IL-based electrolytes 211 5.2.3. Hybrid electrolytes 215 5.2.4. Effects of additives and impurities 216 5.2.5. Solid-state electrolytes 217 5.3. Properties of IL-based electrolytes for Na batteries 223 5.3.1. Physical properties 223 5.3.2. Thermal stability 224 5.3.3. Electrochemical stability 225 5.4. Modeling IL-based electrolytes 226 5.5. Conclusion and future perspectives 229 5.6. Abbreviations 231 5.7. References 233 Chapter 6. Solid Electrolyte Interphase in Na-ion batteries 243 Le Anh MA, Ronnie MOGENSEN, Andrew J. NAYLOR and Reza YOUNESI 6.1. Introduction 243 6.1.1. The solid electrolyte interphase 243 6.1.2. Characterization of the SEI 244 6.2. Physical properties of the Na-ion SEI 247 6.2.1. Electrochemical stability 247 6.2.2. Mechanical properties 248 6.2.3. Dissolution of SEI components 249 6.3. Comparisons of SEI in sodium- and lithium-based electrolytes 252 6.3.1. Formation and composition 252 6.3.2. Resistance 258 6.4. Conclusion 261 6.5. References 261 Chapter 7. Batteries Containing Prussian Blue Analogue Electrodes 265 Colin D. WESSELLS 7.1. Introduction 265 7.1.1. Chapter introduction 265 7.1.2. History of Prussian blue 265 7.1.3. Physical characteristics: structure, composition and morphology 266 7.1.4. Synthetic methods 270 7.2. Electrochemistry of PBAs 273 7.2.1. Mechanism and resulting characteristics 273 7.2.2. Reaction potentials 275 7.2.3. PBA cathodes 278 7.2.4. PBA anodes 286 7.3. Prussian blue batteries 292 7.3.1. Cells containing two PBA electrodes 292 7.3.2. Cells containing one PBA electrode 300 7.3.3. Challenges for PBA batteries 304 7.4. Conclusion and future outlook 306 7.5. References 306 Chapter 8. The Design, Performance and Commercialization of Faradion’s Non-aqueous Na-ion Battery Technology 313 Ashish RUDOLA, Fazlil COOWAR, Richard HEAP and Jerry BARKER 8.1. Introduction 313 8.2. Experimental 315 8.2.1. Active materials 315 8.2.2. Electrode fabrication 318 8.2.3. Pouch cell fabrication 319 8.2.4. Faradion electrolyte 320 8.3. Cell performance 321 8.3.1. Half-cell cycling 321 8.3.2. Full Na-ion cell cycling: curves and stability 322 8.3.3. Rate capability 323 8.3.4. Temperature studies 324 8.3.5. Three-electrode cell studies 325 8.4. Safety and zero energy storage and transportation 327 8.5. Scale-up and prototyping 331 8.6. Demonstrators: stacks and packs 332 8.7. Business and IP strategy 335 8.8. Cost analysis 338 8.9. Future developments 338 8.10. Conclusion 342 8.11. Acknowledgments 343 8.12. References 343 List of Authors 345 Index 349


Best Sellers


Product Details
  • ISBN-13: 9781789450132
  • Publisher: ISTE Ltd
  • Publisher Imprint: ISTE Ltd
  • Height: 10 mm
  • No of Pages: 384
  • Spine Width: 10 mm
  • Width: 10 mm
  • ISBN-10: 1789450136
  • Publisher Date: 07 May 2021
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Weight: 693 gr

Related Categories

Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Na-ion Batteries
ISTE Ltd -
Na-ion Batteries
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Na-ion Batteries

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA