Home > Science, Technology & Agriculture > Mechanical engineering and materials > Materials science > Engineering: Mechanics of fluids > New Approaches in Modeling Multiphase Flows and Dispersion in Turbulence, Fractal Methods and Synthetic Turbulence: (18 ERCOFTAC Series)
37%
New Approaches in Modeling Multiphase Flows and Dispersion in Turbulence, Fractal Methods and Synthetic Turbulence: (18 ERCOFTAC Series)

New Approaches in Modeling Multiphase Flows and Dispersion in Turbulence, Fractal Methods and Synthetic Turbulence: (18 ERCOFTAC Series)

          
5
4
3
2
1

Available


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

This book contains a collection of the main contributions from the first five workshops held by Ercoftac Special Interest Group on Synthetic Turbulence Models (SIG42. It is intended as an illustration of the sig’s activities and of the latest developments in the field. This volume investigates the use of Kinematic Simulation (KS) and other synthetic turbulence models for the particular application to environmental flows. This volume offers the best syntheses on the research status in KS, which is widely used in various domains, including Lagrangian aspects in turbulence mixing/stirring, particle dispersion/clustering, and last but not least, aeroacoustics. Flow realizations with complete spatial, and sometime spatio-temporal, dependency, are generated via superposition of random modes (mostly spatial, and sometime spatial and temporal, Fourier modes), with prescribed constraints such as: strict incompressibility (divergence-free velocity field at each point), high Reynolds energy spectrum. Recent improvements consisted in incorporating linear dynamics, for instance in rotating and/or stably-stratified flows, with possible easy generalization to MHD flows, and perhaps to plasmas. KS for channel flows have also been validated. However, the absence of "sweeping effects" in present conventional KS versions is identified as a major drawback in very different applications: inertial particle clustering as well as in aeroacoustics. Nevertheless, this issue was addressed in some reference papers, and merits to be revisited in the light of new studies in progress.

Table of Contents:
The impact of Kinematic Simulations on quantum turbulence theory, by Demosthenes Kivotides.- 1 Introduction.- 2 Mathematical model;3 Results.- 4 Conclusion.- References.- Detached Eddy Simulation for turbulent flows in a pipe with a snowflake fractal orifice, by H. W. Zheng, F. C. G. A. Nicolleau and N. Qin.- 1 Introduction - motivation.- 2 Governing equations;3 Numerical discretization.- 4 Results.- 5 Conclusions.- References.- KS input spectrum, some fundamental works on the vibration spectrum of a self-similar linear chain, by T. M. Michelitsch, F. C. G. A. Nicolleau, A. F. Nowakowski and S. Derogar.- 1 Introduction;1.1 Input spectrum in the Kinematic simulation technique.- 1.2 Richardson’s locality-in-scale hypothesis.- 2 Experimental studies of fractal generated turbulence.- 3 Fundamental modelling;4 Spectral Graphs for self-similar linear chains.- 5 Construction of self-similar functions and linear operators.- 5.1 Construction of self-similar functions.- 5.2 A self-similar analogue to the Laplace operator.- 5.3 Continuum approximation - link to fractional integrals.- 6 The physical chain model.- 7 Conclusions.- References.- Can Kinematic Simulation predict Richardson’s regime? , by F. C. G. A. Nicolleau and A. Abou El-Azm Aly.- 1 Introduction.- 1.1 The two-particle dispersion problem.- 1.2 Observation of the Richardson law.- 2 Kinematic simulation.- 2.1 Kinematic simulation technique.- 2.2 Kinematic Simulation’s predictions of Richardson’s law.- 2.3 The KS method for isotropic turbulence.- 2.4 The Eulerian field time dependence.- 3 KS and Richardson Regime Validation.- 3.1 Particle pair diffusivity.- 3.2 Sensitivity to the energy spectrum power law.- 3.3 Effect of varying the unsteadiness parameter on the Validity of Richardson Regime.- 4 Conclusion.- References.- Incorporating linear dynamics and strong anisotropy in KS. Application to diffusion in rotating, stratified, MHD turbulence, and to aeroacoustics, by C. Cambon,F. S. Godeferd and B. Favier.- 1 KS for homogeneous isotropic turbulence. What remains to be done ?.- 1.1 Is the randomization process optimal?.- 1.2 Are the temporal random frequencies really random variables ?.- 2 Incorporating linear dynamics in KS. Application to rotatin and/or stratified flows.- 2.1 Analogy with the Rapid Distortion Theory.- 2.2 The role of inertial waves.- 2.3 Stable stratification with or without rotation.- 3 The linear dynamics of MHD turbulence.- 3.1 Basic equations.- coexistence of waves with anisotropic ohmic dissipation.- 3.2 Preliminary MHD results with and without rotation.- 4 Accounting for strong anisotropy.- 4.1 Anisotropy created by linear mechanisms from isotropic initial data.- 4.2 Anisotropic initialization, link to ‘structures’.- 4.3 Some applications.- 5 Application to aeroacoustics in turbulence with and without rotation.- 5.1 Isotropic turbulence.- 5.2 Rotating turbulence.- 6 Conclusions and perspectives.- Appendices.- References.- Advances in Particle Representation Modeling of homogeneous turbulence. From the linear PRM version to the interacting viscoelastic IPRM , by S.C. Kassinos and E. Akylas.- 1 Introduction.- 2 The RDT formulation.- 3 The Structure Tensors.- 4 Particle Representation of the RDT of Homogeneous Turbulence.- 4.1 Particle Properties.- 4.2 Vector Identities of the Particle Properties.- 4.3 Evolution Equations of the Particle Properties.- 4.4 Representation of the One Point Statistics.- 5 The Interacting Particle Representation Model.- 5.1 Formulation of the IPRM.- 5.2 Evaluation of the IPRM.- 6 Summary and Conclusions.- References.- Oscillation-free Adaptive Simulation of Compressible Two-fluid Flows with Different Types of Equation of State, by H. W. Zheng, C. Shu, Y. T. Chew, and N. Qin.- 1 Introduction.- 2 Compressible Two-fluid Flows.- 2.1 Modelling with general form of equation of state.- 2.2 Oscillation-free analysis.- 3 Discretization on quadrilateral-cell based adaptive mesh.- 4 Results.- 4.1Interface translation problem.- 4.2 Bubble-shock interaction.- 5 Conclusions.- References.- Computing the evolution of interfaces using multi-component flow equations, by Fatma Ghangir and Andrzej F. Nowakowski.- 1 Introduction.- 2 The parent flow model.- 3 The hyperbolic 2D model and its primitive variable form.- 4 Numerical Solution.- 4.1 The discretization of hyperbolic system with non-conservative terms.- 4.2 Velocity and pressure relaxation.- 5 The numerical results.- 5.1 Test problems for one-dimensional compressible multiphase flows.- 5.2 Test Problems For 2D Compressible Multiphase Flows.- 5.3 Interface test.- 5.4 Bubble explosion under water test.- 6 Conclusion.- References.- The effect of turbulence on the spreading of infectious airborne droplets in hospitals , by C.A. Klettner, I. Eames and J.W. Tang.- 1 Introduction.- 2 Mathematical model.- 2.1 Synthetic model of turbulence.- 2.2 Equation of motion of an evaporating droplet.- 2.3 Diagnostics.- 3 Numerical results.- 4 Conclusion.- 5 Acknowledgments.- References.


Best Sellers


Product Details
  • ISBN-13: 9789400725058
  • Publisher: Springer
  • Publisher Imprint: Springer
  • Depth: 13
  • Height: 235 mm
  • No of Pages: 154
  • Series Title: 18 ERCOFTAC Series
  • Weight: 412 gr
  • ISBN-10: 9400725051
  • Publisher Date: 29 Oct 2011
  • Binding: Hardback
  • Edition: 2012
  • Language: English
  • Returnable: Y
  • Spine Width: 11 mm
  • Width: 155 mm


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
New Approaches in Modeling Multiphase Flows and Dispersion in Turbulence, Fractal Methods and Synthetic Turbulence: (18 ERCOFTAC Series)
Springer -
New Approaches in Modeling Multiphase Flows and Dispersion in Turbulence, Fractal Methods and Synthetic Turbulence: (18 ERCOFTAC Series)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

New Approaches in Modeling Multiphase Flows and Dispersion in Turbulence, Fractal Methods and Synthetic Turbulence: (18 ERCOFTAC Series)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA