Home > Mathematics and Science Textbooks > Mathematics > Applied mathematics > Optimization Algorithms on Matrix Manifolds
30%
Optimization Algorithms on Matrix Manifolds

Optimization Algorithms on Matrix Manifolds

          
5
4
3
2
1

Available


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

Many problems in the sciences and engineering can be rephrased as optimization problems on matrix search spaces endowed with a so-called manifold structure. This book shows how to exploit the special structure of such problems to develop efficient numerical algorithms. It places careful emphasis on both the numerical formulation of the algorithm and its differential geometric abstraction--illustrating how good algorithms draw equally from the insights of differential geometry, optimization, and numerical analysis. Two more theoretical chapters provide readers with the background in differential geometry necessary to algorithmic development. In the other chapters, several well-known optimization methods such as steepest descent and conjugate gradients are generalized to abstract manifolds. The book provides a generic development of each of these methods, building upon the material of the geometric chapters. It then guides readers through the calculations that turn these geometrically formulated methods into concrete numerical algorithms. The state-of-the-art algorithms given as examples are competitive with the best existing algorithms for a selection of eigenspace problems in numerical linear algebra. Optimization Algorithms on Matrix Manifolds offers techniques with broad applications in linear algebra, signal processing, data mining, computer vision, and statistical analysis. It can serve as a graduate-level textbook and will be of interest to applied mathematicians, engineers, and computer scientists.

Table of Contents:
List of Algorithms xi Foreword, by Paul Van Dooren xiii Notation Conventions xv Chapter 1. Introduction 1 Chapter 2. Motivation and Applications 5 2.1 A case study: the eigenvalue problem 5 2.1.1 The eigenvalue problem as an optimization problem 7 2.1.2 Some benefits of an optimization framework 9 2.2 Research problems 10 2.2.1 Singular value problem 10 2.2.2 Matrix approximations 12 2.2.3 Independent component analysis 13 2.2.4 Pose estimation and motion recovery 14 2.3 Notes and references 16 Chapter 3. Matrix Manifolds: First-Order Geometry 17 3.1 Manifolds 18 3.1.1 Definitions: charts, atlases, manifolds 18 3.1.2 The topology of a manifold* 20 3.1.3 How to recognize a manifold 21 3.1.4 Vector spaces as manifolds 22 3.1.5 The manifolds Rn x p and Rn x p 22 3.1.6 Product manifolds 23 3.2 Differentiable functions 24 3.2.1 Immersions and submersions 24 3.3 Embedded submanifolds 25 3.3.1 General theory 25 3.3.2 The Stiefel manifold 26 3.4 Quotient manifolds 27 3.4.1 Theory of quotient manifolds 27 3.4.2 Functions on quotient manifolds 29 3.4.3 The real projective space RPn x 1 30 3.4.4 The Grassmann manifold Grass(p, n) 30 3.5 Tangent vectors and differential maps 32 3.5.1 Tangent vectors 33 3.5.2 Tangent vectors to a vector space 35 3.5.3 Tangent bundle 36 3.5.4 Vector fields 36 3.5.5 Tangent vectors as derivations? 37 3.5.6 Differential of a mapping 38 3.5.7 Tangent vectors to embedded submanifolds 39 3.5.8 Tangent vectors to quotient manifolds 42 3.6 Riemannian metric, distance, and gradients 45 3.6.1 Riemannian submanifolds 47 3.6.2 Riemannian quotient manifolds 48 3.7 Notes and references 51 Chapter 4. Line-Search Algorithms on Manifolds 54 4.1 Retractions 54 4.1.1 Retractions on embedded submanifolds 56 4.1.2 Retractions on quotient manifolds 59 4.1.3 Retractions and local coordinates* 61 4.2 Line-search methods 62 4.3 Convergence analysis 63 4.3.1 Convergence on manifolds 63 4.3.2 A topological curiosity* 64 4.3.3 Convergence of line-search methods 65 4.4 Stability of fixed points 66 4.5 Speed of convergence 68 4.5.1 Order of convergence 68 4.5.2 Rate of convergence of line-search methods* 70 4.6 Rayleigh quotient minimization on the sphere 73 4.6.1 Cost function and gradient calculation 74 4.6.2 Critical points of the Rayleigh quotient 74 4.6.3 Armijo line search 76 4.6.4 Exact line search 78 4.6.5 Accelerated line search: locally optimal conjugate gradient 78 4.6.6 Links with the power method and inverse iteration 78 4.7 Refining eigenvector estimates 80 4.8 Brockett cost function on the Stiefel manifold 80 4.8.1 Cost function and search direction 80 4.8.2 Critical points 81 4.9 Rayleigh quotient minimization on the Grassmann manifold 83 4.9.1 Cost function and gradient calculation 83 4.9.2 Line-search algorithm 85 4.10 Notes and references 86 Chapter 5. Matrix Manifolds: Second-Order Geometry 91 5.1 Newton's method in Rn 91 5.2 Affine connections 93 5.3 Riemannian connection 96 5.3.1 Symmetric connections 96 5.3.2 Definition of the Riemannian connection 97 5.3.3 Riemannian connection on Riemannian submanifolds 98 5.3.4 Riemannian connection on quotient manifolds 100 5.4 Geodesics, exponential mapping, and parallel translation 101 5.5 Riemannian Hessian operator 104 5.6 Second covariant derivative* 108 5.7 Notes and references 110 Chapter 6. Newton's Method 111 6.1 Newton's method on manifolds 111 6.2 Riemannian Newton method for real-valued functions 113 6.3 Local convergence 114 6.3.1 Calculus approach to local convergence analysis 117 6.4 Rayleigh quotient algorithms 118 6.4.1 Rayleigh quotient on the sphere 118 6.4.2 Rayleigh quotient on the Grassmann manifold 120 6.4.3 Generalized eigenvalue problem 121 6.4.4 The nonsymmetric eigenvalue problem 125 6.4.5 Newton with subspace acceleration: Jacobi-Davidson 126 6.5 Analysis of Rayleigh quotient algorithms 128 6.5.1 Convergence analysis 128 6.5.2 Numerical implementation 129 6.6 Notes and references 131 Chapter 7. Trust-Region Methods 136 7.1 Models 137 7.1.1 Models in Rn 137 7.1.2 Models in general Euclidean spaces 137 7.1.3 Models on Riemannian manifolds 138 7.2 Trust-region methods 140 7.2.1 Trust-region methods in Rn 140 7.2.2 Trust-region methods on Riemannian manifolds 140 7.3 Computing a trust-region step 141 7.3.1 Computing a nearly exact solution 142 7.3.2 Improving on the Cauchy point 143 7.4 Convergence analysis 145 7.4.1 Global convergence 145 7.4.2 Local convergence 152 7.4.3 Discussion 158 7.5 Applications 159 7.5.1 Checklist 159 7.5.2 Symmetric eigenvalue decomposition 160 7.5.3 Computing an extreme eigenspace 161 7.6 Notes and references 165 Chapter 8. A Constellation of Superlinear Algorithms 168 8.1 Vector transport 168 8.1.1 Vector transport and affine connections 170 8.1.2 Vector transport by differentiated retraction 172 8.1.3 Vector transport on Riemannian submanifolds 174 8.1.4 Vector transport on quotient manifolds 174 8.2 Approximate Newton methods 175 8.2.1 Finite difference approximations 176 8.2.2 Secant methods 178 8.3 Conjugate gradients 180 8.3.1 Application: Rayleigh quotient minimization 183 8.4 Least-square methods 184 8.4.1 Gauss-Newton methods 186 8.4.2 Levenberg-Marquardt methods 187 8.5 Notes and references 188 A. Elements of Linear Algebra, Topology, and Calculus 189 A.1 Linear algebra 189 A.2 Topology 191 A.3 Functions 193 A.4 Asymptotic notation 194 A.5 Derivatives 195 A.6 Taylor's formula 198 Bibliography 201 Index 221


Best Sellers


Product Details
  • ISBN-13: 9780691132983
  • Publisher: Princeton University Press
  • Publisher Imprint: Princeton University Press
  • Depth: 19
  • Language: English
  • Returnable: Y
  • Spine Width: 20 mm
  • Width: 152 mm
  • ISBN-10: 0691132984
  • Publisher Date: 23 Dec 2007
  • Binding: Hardback
  • Height: 235 mm
  • No of Pages: 240
  • Series Title: English
  • Weight: 454 gr


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Optimization Algorithms on Matrix Manifolds
Princeton University Press -
Optimization Algorithms on Matrix Manifolds
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Optimization Algorithms on Matrix Manifolds

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA