Home > Technology & Engineering > Electronics & communications engineering > Electronics engineering > Circuits & components > Power Distribution Networks with On-Chip Decoupling Capacitors
43%
Power Distribution Networks with On-Chip Decoupling Capacitors

Power Distribution Networks with On-Chip Decoupling Capacitors

          
5
4
3
2
1

Available


There is a newer edition of this item:



About the Author: Eby G. Friedman was born in Jersey City, New Jersey in 1957. He received the B. S. degree from Lafayette College, Easton, Pennsylvania in 1979, and the M. S. and Ph. D. degrees from the University of California, Irvine, in 1981 and 1989, respectively, all in electrical engineering.
He was with Philips Gloeilampen Fabrieken, Eindhoven, The Netherlands, in 1978 where he worked on the design of bipolar differential amplifiers. From 1979 to 1983, he was employed by Hughes Aircraft Company, Newport Beach, California, working in the areas of custom IC design, software compatible gate array design, one- and two-dimensional device modeling, circuit modeling, and double level metal process development. From 1983 to 1991, he was employed at Hughes Aircraft Company, Carlsbad, California, rising to the position of Manager of the Signal Processing Design and Test Department, responsible for the design and test of high performance VLSI/VHSIC CMOS and BIMOS digital and analog IC's, the development of supporting design and test methodologies and CAD tools, functional and parametric test, and the development of high performance and high resolution DSP and oversampled systems.

Dr. Friedman has been with the Department of Electrical and Computer Engineering at the University of Rochester, Rochester, New York, since 1991, where he is a Distinguished Professor and Director of the High Performance VLSI/IC Design and Analysis Laboratory. He previously was the Director of the Center for Electronic Imaging Systems. He is also a Visiting Professor at the Technion - Israel Institute of Technology. He also directs the Technion Advanced Circuits Research Center (ACRC). His current research and teaching interests are in high performance synchronous digital and mixed-signal microelectronic design and analysis with application to high speed portable processors and low power wireless communications.

He has authored twelve book chapters and many papers in the fields of high speed and low power CMOS design techniques, interconnect and substrate noise, pipelining and retiming, three-dimensional integration, and the theory and application of power and synchronous clock distribution networks.

Dr. Friedman has also authored or edited sixteen books, including Clock Distribution Networks in VLSI Circuits and Systems (IEEE Press, 1995), High Performance Clock Distribution Networks (Kluwer Academic Publishers, 1997), Analog Design Issues in Digital VLSI Circuits and Systems (Kluwer Academic Publishers, 1997), Timing Optimization through Clock Skew Scheduling (Kluwer Academic Publishers, 2000 and 2009), On-Chip Inductance in High Speed Integrated Circuits (Kluwer Academic Publishers, 2001), Power Distribution Networks in High Speed Integrated Circuits (Kluwer Academic Publishers, 2004), Multi-Voltage CMOS Circuit Design (John Wiley & Sons Press, 2006), Power Distribution Networks with On-Chip Decoupling Capacitors (Springer Verlag, 2008 and 2011), Three-Dimensional Integrated Circuit Design (Morgan Kaufmann, 2009), and High Performance Integrated Circuit Design (McGraw-Hill Publishers, 2012).

Dr. Friedman is a Fellow of the IEEE, Chair of the steering committee for the IEEE Transactions on Very Large Scale Integration (VLSI) Systems, a Regional Editor of the Journal of Circuits, Systems and Computers, a Member of the editorial board of the Analog Integrated Circuits and Signal Processing, Microelectronics Journal, Journal of Low Power Electronics, and Journal of VLSI Signal Processing, and a Member of the technical program committee of a number of conferences.

He has been Editor-In-Chief of the IEEE Transactions on Very Large Scale Integration (VLSI) Systems, a Distinguished Lecturer of the IEEE CAS Society, a Member of the editorial board of the Proceedings of the IEEE and IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, a member of the IEEE Circuits and Systems (CAS) Society Board of Governors, CAS liaison to the IEEE Solid-State Circuits Society (SSCS), Guest editor of several special journal issues, Chair of the VLSI Systems and Applications IEEE Circuits and Systems Society Technical Committee, Chair of the Electron Devices Chapter of the IEEE Rochester Section, and General/Program/Technical Co-Chair of the 1997 International Workshop on Clock Distribution Networks, 2000 IEEE Workshop on Signal Processing Systems, 2003 and 2004 IEEE International Workshop on System-on-Chip for Real-Time Applications, 2004 IEEE International Conference on Electronics, Circuits, and Systems, 2006 IEEE International Symposium on Circuits and Systems, and 2007 IEEE International Symposium on Networks on Chip (NoC).

Dr. Friedman is a Fulbright scholar and has been a recipient of the Howard Hughes Masters and Doctoral Fellowships, an IBM University Research Award, an NSF Research Initiation Award, a DoD Augmentation Award for Science and Engineering Research Training, the 1996 Outstanding Chapter Chairman for IEEE Rochester section award, a GRC Inventor Recognition Award, a University of Rochester College of Engineering Teaching Excellence Award, the University of Rochester Graduate Teaching Award, and the IEEE Circuits and Systems 2013 Charles A. Desoer Technical Achievement Award.

Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

Decoupling capacitors are often utilized to mitigate power distribution noise, maintaining the impedance of a power distribution system below the target specifications in the range of operating frequencies.

This book presents power distribution grids with on-chip decoupling capacitors and discusses the design of decoupling capacitors for power distribution networks with multiple supply voltages. To be effective, on-chip decoupling capacitors should be located inside the effective radius. This book develops a design methodology for placing on-chip decoupling capacitors in this manner and presents two criteria to estimate the minimum required on-chip decoupling capacitance. Techniques and algorithms for the computer-aided design and analysis of on-chip power distribution networks are also described; however, the emphasis of the book is on developing circuit intuition and understanding the principles that govern the design and operation of power distribution systems.


Best Sellers



Product Details
  • ISBN-13: 9780387716008
  • Publisher: Springer
  • Publisher Imprint: Springer
  • Edition: 2008 ed.
  • Language: English
  • Returnable: N
  • Spine Width: 32 mm
  • Width: 158 mm
  • ISBN-10: 0387716009
  • Publisher Date: 15 Nov 2007
  • Binding: Hardback
  • Height: 241 mm
  • No of Pages: 516
  • Series Title: English
  • Weight: 844 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Power Distribution Networks with On-Chip Decoupling Capacitors
Springer -
Power Distribution Networks with On-Chip Decoupling Capacitors
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Power Distribution Networks with On-Chip Decoupling Capacitors

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!