18%
Power Electronics Semiconductor Devices: (English)

Power Electronics Semiconductor Devices: (English)

          
5
4
3
2
1

International Edition


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

This book relates the recent developments in several key electrical engineering R&D labs, concentrating on power electronics switches and their use. The first sections deal with key power electronics technologies, MOSFETs and IGBTs, including series and parallel associations. The next section examines silicon carbide and its potentiality for power electronics applications and its present limitations. Then, a dedicated section presents the capacitors, key passive components in power electronics, followed by a modeling method allowing the stray inductances computation, necessary for the precise simulation of switching waveforms. Thermal behavior associated with power switches follows, and the last part proposes some interesting prospectives associated to Power Electronics integration.

Table of Contents:
Preface xi Chapter 1. Power MOSFET Transistors 1 Pierre ALOÏSI 1.1. Introduction 1 1.2. Power MOSFET technologies 5 1.2.1. Diffusion process 5 1.2.2. Physical and structural MOS parameters 7 1.2.3. Permanent sustaining current 20 1.3. Mechanism of power MOSFET operation 23 1.3.1. Basic principle 23 1.3.2. Electron injection 23 1.3.3. Static operation 25 1.3.4. Dynamic operation 30 1.4. Power MOSFET main characteristics 34 1.5. Switching cycle with an inductive load 36 1.5.1. Switch-on study 36 1.5.2. Switch-off study 38 1.6. Characteristic variations due to MOSFET temperature changes 44 1.7. Over-constrained operations 46 1.7.1. Overvoltage on the gate 46 1.7.2. Over-current 47 1.7.3. Avalanche sustaining 49 1.7.4. Use of the body diode 50 1.7.5. Safe operating areas 51 1.8. Future developments of the power MOSFET 53 1.9. References 55 Chapter 2. Insulated Gate Bipolar Transistors 57 Pierre ALOÏSI 2.1. Introduction 57 2.2. IGBT technology 58 2.2.1. IGBT structure 58 2.2.2. Voltage and current characteristics 60 2.3. Operation technique 63 2.3.1. Basic principle 63 2.3.2. Continuous operation 64 2.3.3. Dynamic operation 71 2.4. Main IGBT characteristics 74 2.5 One cycle of hard switching on the inductive load 75 2.5.1. Switch-on study 76 2.5.2. Switch-off study 78 2.6 Soft switching study 86 2.6.1. Soft switching switch-on: ZVS (Zero Voltage Switching) 86 2.6.2. Soft switching switch-off: ZCS (Zero Current Switching) 88 2.7. Temperature operation 94 2.8. Over-constraint operations 98 2.8.1. Overvoltage 98 2.8.2. Over-current 99 2.8.3. Manufacturer’s specified safe operating areas 113 2.9. Future of IGBT 116 2.9.1. Silicon evolution 116 2.9.2. Saturation voltage improvements 117 2.10. IGBT and MOSFET drives and protections 119 2.10.1. Gate drive design 119 2.10.2. Gate drive circuits 122 2.10.3. MOSFET and IGBT protections 128 2.11. References 130 Chapter 3. Series and Parallel Connections of MOS and IGBT 133 Daniel CHATROUX , Dominique LAFORE and Jean-Luc SCHANEN 3.1. Introduction 133 3.2. Kinds of associations 134 3.2.1. Increase of power 134 3.2.2. Increasing performance 135 3.3. The study of associations: operation and parameter influence on imbalances in series and parallel 135 3.3.1. Analysis and characteristics for the study of associations 135 3.3.2. Static operation 137 3.3.3. Dynamic operation: commutation 140 3.3.4. Transient operation 149 3.3.5. Technological parameters that influence imbalances 151 3.4. Solutions for design 152 3.4.1. Parallel association 152 3.4.2. Series associations 161 3.4.3. Matrix connection of components 179 3.5. References 182 Chapter 4. Silicon Carbide Applications in Power Electronics 185 Marie-Laure LOCATELLI and Dominique PLANSON 4.1. Introduction 185 4.2. Physical properties of silicon carbide 186 4.2.1. Structural features 186 4.2.2. Chemical, mechanical and thermal features 189 4.2.3. Electronic and thermal features 188 4.2.4. Other “candidates” as semiconductors of power 195 4.3. State of the art technology for silicon carbide power components 296 4.3.1. Substrates and thin layers of SiC 296 4.3.2. Technological steps for achieving power components 203 4.4. Applications of silicon carbide in power electronics 216 4.4.1. SiC components for high frequency power supplies 216 4.4.2. SiC components for switching systems under high voltage and high power 233 4.4.3. High energy SiC components for series protection systems 249 4.5. Conclusion 252 4.6. Acknowledgments 255 4.7. References 255 Chapter 5. Capacitors for Power Electronics 267 Abderrahmane BÉROUAL, Sophie GUILLEMET-FRITSCH and Thierry LEBEY 5.1. Introduction 267 5.2. The various components of the capacitor – description 268 5.2.1. The dielectric material 269 5.2.2. The armatures 269 5.2.3. Technology of capacitors 270 5.2.4. Connections 271 5.3. Stresses in a capacitor 272 5.3.1. Stresses related to the voltage magnitude 272 5.3.2. Losses and drift of capacity 273 5.3.3. Thermal stresses 274 5.3.4. Electromechanical stresses 275 5.3.5. Electromagnetic constraints 276 5.4. Film capacitors 276 5.4.1. Armatures 276 5.4.2. Dielectric materials 279 5.5. Impregnated capacitors 279 5.6. Electrolytic capacitors 280 5.7. Modeling and use of capacitors 282 5.7.1. Limitations of capacitors 283 5.7.2. Application of capacitors 290 5.8. Ceramic capacitors 293 5.8.1. Definitions 294 5.8.2. Methods of producing ceramics 296 5.8.3. Technologies of ceramic capacitors 299 5.8.4. The different types of components 302 5.8.5. Summary – conclusion 310 5.9. Specific applications of ceramic capacitors in power electronics 311 5.9.1. Snubber circuits 311 5.9.2. In ZVS 312 5.9.3. Series resonant converters 313 5.10. R&D perspectives on capacitors for power electronics 313 5.10.1. Film capacitors 313 5.10.2. Electrolytic capacitors 314 5.10.3. Ceramic capacitors 314 5.11. References 315 Chapter 6. Modeling Connections 317 Edith CLAVEL, François COSTA, Arnaud GUENA, Cyrille GAUTIER, James ROUDET and Jean-Luc SCHANEN 6.1. Introduction 317 6.1.1. Importance of interconnections in power electronics 317 6.1.2. The constraints imposed on the interconnections 318 6.1.3. The various interconnections used in power electronics 319 6.1.4. The need to model the interconnections 320 6.2. The method of modeling 321 6.2.1. The required qualities 321 6.2.2. Which method of modeling? 322 6.2.3. Brief description of the PEEC method 324 6.3. The printed circuit board 329 6.3.1. Introduction 330 6.3.2. Thin wire method 330 6.3.3. Expressions of per unit length parameters 332 6.3.4. Representation by multi-poles, “circuit” modeling 340 6.3.5. Topological analysis of printed circuit 346 6.3.6. Experimental applications 349 6.3.7. Conclusion on the simulation of printed circuit 353 6.4. Towards a better understanding of massive interconnections 353 6.4.1. General considerations 353 6.4.2 The printed circuit board or the isolated metal substrate (IMS) 359 6.4.3. Massive conductors 361 6.4.4. Bus bars 361 6.5. Experimental validations 362 6.6. Using these models 366 6.6.1. Determination of equivalent impedance 366 6.6.2. Other applications: towards thermal analysis and electrodynamic efforts computation 390 6.7. Conclusion 399 6.8. References 400 Chapter 7. Commutation Cell 403 James ROUDET and Jean-Luc SCHANEN 7.1. Introduction: a well-defined commutation cell 403 7.2. Some more or less coupled physical phenomena 404 7.3. The players in switching (respective roles of the component and its environment) 410 7.3.1. Closure of the MOSFET 411 7.3.2. Opening of the MOSFET 424 7.3.3. Summary 431 7.4. References 432 Chapter 8. Power Electronics and Thermal Management 433 Corinne PERRET and Robert PERRET 8.1. Introduction: the need for efficient cooling of electronic modules 433 8.2. Current power components 436 8.2.1. Silicon chip: the active component 436 8.2.2. Distribution of losses in the silicon chip 442 8.3. Power electronic modules 442 8.3.1. Main features of the power electronic modules 442 8.3.2. The main heat equations in the module 444 8.3.3. Cooling currently used for components of power electronics 446 8.3.4. Towards an “all silicon” approach 448 8.3.5. Conclusion 451 8.4. Laws of thermal and fluid exchange for forced convection with single phase operation 452 8.4.1. Notion of thermal resistance 452 8.4.2. Laws of convective exchanges from a thermal and hydraulic point of view: the four numbers of fluids physics 456 8.5. Modeling heat exchanges 461 8.5.1. Semi-analytical approach 461 8.5.2. The numerical models 472 8.5.3. Taking into account electro-thermal coupling 478 8.6. Experimental validation and results 486 8.6.1. Infrared thermography 486 8.6.2. Indirect measurement of temperature from a thermo-sensible parameter 490 8.7. Conclusion 493 8.8. References 494 Chapter 9. Towards Integrated Power Electronics 497 Patrick AUSTIN, Marie BREIL and Jean-Louis SANCHEZ 9.1. The integration 497 9.1.1. Introduction 497 9.1.2. The different types of monolithic integration 499 9.2. Examples and development of functional integration 507 9.2.1. The MOS thyristor structures 507 9.2.2. Evolution towards the integration of specific functions 514 9.3. Integration of functions within the power component 520 9.3.1. Monolithic integration of electrical functions 520 9.3.2. Extensions of integration 530 9.4. Design method and technologies 535 9.4.1 Evolution of methods and design tools for functional integration 535 9.4.2. The technologies 537 9.5. Conclusion 541 9.6. References 542 List of Authors 547 Index 551


Best Sellers


Product Details
  • ISBN-13: 9781848210646
  • Publisher: ISTE Ltd and John Wiley & Sons Inc
  • Publisher Imprint: ISTE Ltd and John Wiley & Sons Inc
  • Depth: 38
  • Language: English
  • Returnable: N
  • Spine Width: 37 mm
  • Width: 164 mm
  • ISBN-10: 1848210647
  • Publisher Date: 06 Mar 2009
  • Binding: Hardback
  • Height: 239 mm
  • No of Pages: 576
  • Series Title: English
  • Weight: 997 gr


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Power Electronics Semiconductor Devices: (English)
ISTE Ltd and John Wiley & Sons Inc -
Power Electronics Semiconductor Devices: (English)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Power Electronics Semiconductor Devices: (English)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA