Home > General > Quantum Physics for Scientists and Technologists: Fundamental Principles and Applications for Biologists, Chemists, Computer Scientists, and Nanotechnologists
33%
Quantum Physics for Scientists and Technologists: Fundamental Principles and Applications for Biologists, Chemists, Computer Scientists, and Nanotechnologists

Quantum Physics for Scientists and Technologists: Fundamental Principles and Applications for Biologists, Chemists, Computer Scientists, and Nanotechnologists

          
5
4
3
2
1

Available


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Add to Wishlist

About the Book

Quantum Physics for Scientists and Technologists is a self-contained, comprehensive review of this complex branch of science. The book demystifies difficult concepts and views the subject through non-physics fields such as computer science, biology, chemistry, and nanotechnology. It explains key concepts and phenomena in the language of non-physics majors and with simple math, assuming no prior knowledge of the topic. This cohesive book begins with the wavefunction to develop the basic principles of quantum mechanics such as the uncertainty principle and wave-particle duality. Comprehensive coverage of quantum theory is presented, supported by experimental results and explained through applications and examples without the use of abstract and complex mathematical tools or formalisms. From there, the book: Takes the mystery out of the Schrodinger equation, the fundamental equation of quantum physics, by applying it to atoms Shows how quantum mechanics explains the periodic table of elements Introduces the quantum mechanical concept of spin and spin quantum number, along with Pauli's Exclusion Principle regarding the occupation of quantum states Addresses quantum states of molecules in terms of rotation and vibration of diatomic molecules Explores the interface between classical statistical mechanics and quantum statistical mechanics Discusses quantum mechanics as a common thread through different fields of nanoscience and nanotechnology Each chapter features real-world applications of one or more quantum mechanics principles. "Study Checkpoints" and problems with solutions are presented throughout to make difficult concepts easy to understand. In addition, pictures, tables, and diagrams with full explanations are used to present data and further explain difficult concepts. This book is designed as a complete course in quantum mechanics for senior undergraduates and first-year graduate students in non-physics majors. It also applies to courses such as modern physics, physical chemistry and nanotechnology. The material is also accessible to scientists, engineers, and technologists working in the fields of computer science, biology, chemistry, engineering, and nanotechnology. 

Table of Contents:
Acknowledgments xv About the Author xvii About the Tech Editor xix Periodic Table of the Elements xxi Fundamental Physical Constants xxiii Important Combinations of Physical Constants xxv Preface: Science, Technology, and Quantum Physics: Mind the Gap xxvii 1 First, There was Classical Physics 1 1.1 Introduction 2 1.2 Physics and Classical Physics 3 1.3 The Classical World of Particles 10 1.4 Physical Quantities 12 1.5 Newton’s Laws of Motion 15 1.6 Rotational Motion 18 1.7 Superposition and Collision of Particles 22 1.7.1 Superposition 22 1.7.2 Collision and Scattering 25 1.8 Classical World of Waves 26 1.8.1 Periodic Waves 27 1.8.2 Defining Wave Characteristics 27 1.9 Reflection, Refraction, and Scattering 30 1.10 Diffraction and Interference 32 1.10.1 Diffraction 32 1.10.2 Interference 34 1.11 Equation of Wave Motion 35 1.12 Light: Particle or Wave? 38 1.13 Understanding Electricity 39 1.14 Understanding Magnetism 45 1.14.1 Magnetic Field 45 1.14.2 Magnetic Flux 47 1.15 Understanding Electromagnetism 49 1.15.1 Types of Electromagnetic and Other Waves 49 1.15.2 Electromagnetic Spectrum 50 1.16 Maxwell’s Equations 52 1.17 Confinement, Standing Waves, and Wavegroups 55 1.17.1 Confinement 55 1.17.2 Standing Waves 55 1.17.3 Wavegroups 59 1.18 Particles and Waves: The Big Picture 62 1.19 The Four Fundamental Forces of Nature 63 1.19.1 Gravitational Force 65 1.19.2 Electromagnetic Force 66 1.19.3 Weak and Strong Nuclear Forces 67 1.19.4 Four Fundamental Forces: The Big Picture 68 1.20 Unification: A Secret to Scientific and Technological Revolutions 69 1.21 Special Theory of Relativity 72 1.22 Classical Approach 75 1.22.1 Separation of Particles and Waves: Either It is a Particle or a Wave 75 1.22.2 Either It is Here or There: The Certainty 75 1.22.3 The World is Continuous: Any Value Within a Range is Possible 76 1.22.4 Common Grounds Among Particles and Waves: A Red Flag 76 1.23 Summary 77 1.24 Additional Problems 78 2 Particle Behavior of Waves 80 2.1 Introduction 82 2.2 The Nature of Light: The Big Picture 82 2.3 Black-Body Radiation 84 2.3.1 The Classical Collapse 85 2.3.2 The Quantum Rescue 89 2.4 The Photoelectric Effect 93 2.4.1 The Photoelectric Effect: The Experiment 93 2.4.2 The Classical Collapse 95 2.4.3 The Quantum Rescue 98 2.5 X-Ray Diffraction 103 2.6 The Compton Effect 106 2.7 Living in the Quantum World 110 2.7.1 Using Black-Body Radiation 110 2.7.2 Using the Photoelectric Effect 111 2.7.3 Using Compton Scattering 113 2.8 Summary 114 2.9 Additional Problems 115 3 Wave Behavior of Particles 117 3.1 Introduction 118 3.2 Particles and Waves: The Big Picture 118 3.3 The de Broglie Hypothesis 120 3.4 Measuring the Wavelength of Electrons 125 3.5 Quantum Confinement 129 3.6 The Uncertainty Principle 133 3.6.1 Understanding Particle Waves 133 3.6.2 Understanding the Uncertainty Principle 136 3.6.3 Another Form of the Uncertainty Principle 140 3.7 Wave-Particle Duality of Nature 141 3.8 Living in the Quantum World 143 3.8.1 Seeing the Nanoworld with Electron Waves 143 3.8.2 Seeing Nanostructures with the Diffraction of Particle Waves 145 3.8.3 Using Atomic Waves to Navigate Your Way 147 3.9 Summary 147 3.10 Additional Problems 148 4 Anatomy of an Atom 150 4.1 Introduction 151 4.2 Quantum Mechanics of an Atom: The Big Picture 152 4.3 Dalton’s Atomic Theory 153 4.4 The Structure of an Atom 154 4.5 The Classical Collapse of an Atom 157 4.6 The Quantum Rescue 161 4.6.1 Bohr’s Model 161 4.6.2 The Bohr Model Meets the Spectral Series 165 4.6.3 Limitations of the Bohr Model 171 4.7 Quantum Mechanics of an Atomic Structure 171 4.7.1 Principle Energy Levels 172 4.7.2 Sublevels 173 4.7.3 Electron Orbitals 173 4.8 Classical Physics or Quantum Physics: Which One is the True Physics? 175 4.9 Living in the Quantum World 178 4.9.1 Free Electron Model for Pi Bonding 178 4.10 Summary 180 4.11 Additional Problems 180 5 Principles and Formalism of Quantum Mechanics 182 5.1 Introduction 183 5.2 Here Comes Quantum Mechanics 184 5.3 Wave Function: The Basic Building Block of Quantum Mechanics 185 5.3.1 It is All about Information 186 5.3.2 Introducing Probability in Science 186 5.4 Operators: The Information Extractors 189 5.5 Predicting the Measurements 189 5.5.1 Expectation Values 191 5.5.2 Operators 193 5.6 Put It All into an Equation 196 5.7 Eigenfunctions and Eigenvalues 198 5.8 Double Slit Experiment Revisited 200 5.8.1 Double Slit Experiment for Particles 201 5.8.2 Chasing the Electron 202 5.9 The Quantum Reality 204 5.10 Living in the Quantum World 206 5.11 Summary 208 5.12 Additional Problems 209 6 The Anatomy and Physiology of an Equation 210 6.1 Introduction 211 6.2 The Schrödinger Wave Equation 211 6.3 The Schrödinger Equation for a Free Particle 217 6.4 Schrödinger Equation for a Particle in a Box 219 6.4.1 Setting Up and Solving the Schrödinger Equation 220 6.4.2 Here Comes the Energy Quantization 221 6.4.3 Exploring the Solutions of the Schrödinger Equation 224 6.4.4 The Uncertainty and Correspondence Principles: Revisited 226 6.4.5 Quantum Mechanical Tunneling 228 6.5 A Particle in a Three-Dimensional Box 232 6.6 Harmonic Oscillator 234 6.6.1 Understanding Harmonic Motion 234 6.6.2 Harmonic Motion in Quantum Mechanics 238 6.7 Understanding the Wave Functions of a Harmonic Oscillator 243 6.8 Comparing Quantum Mechanical Oscillator with Classical Oscillator 247 6.9 Living in the Quantum World 250 6.10 Summary 252 6.11 Additional Problems 252 7 Quantum Mechanics of an Atom 254 7.1 Introduction 255 7.2 Applying the Schrödinger Equation to the Hydrogen Atom 257 7.3 Solving the Schrödinger Equation for the Hydrogen Atom 260 7.3.1 Separating the Variables in the Schrödinger Equation 260 7.3.2 Solution of the Azimuthal Equation 262 7.3.3 Solutions of the Angular Equation 264 7.3.4 Solutions of the Radial Equation 264 7.3.5 Solutions of the Schrödinger Equation for the Hydrogen Atom: Putting It All Together 267 7.4 Finding the Electron 270 7.5 Understanding the Quantum Numbers 273 7.5.1 The Principal Quantum Number and Energy Radiations 273 7.5.2 The Orbital Quantum Number 276 7.5.3 Magnetic Quantum Number 280 7.6 The Significance of Hydrogen 282 7.7 Living in the Quantum World 282 7.8 Summary 284 7.9 Additional Problems 286 8 Quantum Mechanics of Many-Electron Atoms 287 8.1 Introduction 288 8.2 Two Challenges to Quantum Mechanics: The Periodic Table and the Zeeman Effect 289 8.2.1 The Periodic Table of Elements 290 8.2.2 The Split Spectral Lines and the Zeeman Effect 291 8.3 Introducing the Electron Spin 292 8.4 Exclusion Principle 295 8.5 Understanding the Atomic Structure 298 8.5.1 Understanding Shells, Subshells, and Orbitals 298 8.5.2 Understanding the Electron Configuration of Atoms 301 8.6 Understanding the Physical Basis of the Periodic Table 307 8.6.1 General Trends Across Groups and Periods 310 8.6.2 Alkalis and Alkaline Earths 312 8.6.3 Transition Metals 312 8.6.4 Inert Gases 313 8.6.5 Halogens 313 8.6.6 Lanthanides and Actinides 314 8.7 Completing the Story of Angular Momentum 314 8.8 Understanding the Zeeman Effect 317 8.9 Living in the Quantum World 319 8.10 Summary 321 8.11 Additional Problems 322 9 Quantum Mechanics of Molecules 324 9.1 Introduction 325 9.2 A System of Molecules in Motion 327 9.3 Bond: The Atomic Bond 329 9.4 Diatomic Molecules 334 9.5 Rotational States of Molecules 336 9.6 Vibrational States of Molecules 340 9.7 Combination of Rotations and Vibrations 344 9.8 Electronic States of Molecules 350 9.9 Living in the Quantum World 351 9.10 Summary 353 9.11 Additional Problems 354 10 Statistical Quantum Mechanics 356 10.1 Introduction 357 10.2 Statistical Distributions 358 10.3 Maxwell–Boltzmann Distribution 360 10.4 Molecular Systems with Quantum States 369 10.5 Distribution of Vibrational Energies 371 10.5.1 Vibrational Energy 372 10.5.2 Population Probability of Vibrational States 373 10.5.3 Correspondence with Classical Mechanics 376 10.6 Distribution of Rotational Energies 378 10.6.1 Rotational Energy 378 10.6.2 Population Probability of Rotational States 378 10.6.3 Correspondence with Classical Mechanics 380 10.7 Distribution of Translational Energies 381 10.8 Quantum Statistics of Distinguishable Particles: Putting It All Together 384 10.9 Quantum Statistics of Indistinguishable Particles 386 10.10 Planck’s Radiation Formula 391 10.11 Absorption, Emission, and Lasers 394 10.12 Bose–Einstein Condensation 396 10.13 Living in the Quantum World 399 10.14 Summary 400 10.15 Additional Problems 402 11 Quantum Mechanics: A Thread Runs through It all 405 11.1 Introduction 406 11.2 Nanoscience and Nanotechnology 407 11.2.1 Sciences behind Nanoscience 407 11.2.2 You Need to See Them before You Could Control Them 410 11.3 Nanoscale Quantum Confinement of Matter 415 11.3.1 Buckyballs 415 11.3.2 Carbon Nanotubes 419 11.3.3 Nanocrystals 420 11.3.4 Quantum Dots 421 11.3.5 Quantum Mechanics for Nanostructures 423 11.3.6 Favoring Balls and Tubes 425 11.3.7 Fruits of Quantum Confinement 425 11.4 Quick Overview of Microelectronics 426 11.4.1 Microelectronics: A Hindsight 426 11.4.2 Basics of Microchips 428 11.5 Quantum Computing 432 11.6 Quantum Biology 434 11.6.1 Four Fundamental Nanostructures of Life 435 11.6.2 Central Dogma of Molecular Biology 441 11.6.3 Sizes of Biological Particles 442 11.6.4 Diving Deeper into the Cell with Quantum Mechanics 444 11.7 Exploring the Interface of Classical Mechanics and Quantum Mechanics 449 11.8 Living in the Quantum World 449 11.9 Summary 451 11.10 Additional Problems 451 Bibliography 453 Index 455


Best Sellers


Product Details
  • ISBN-13: 9780470294529
  • Publisher: John Wiley & Sons
  • Publisher Imprint: John Wiley & Sons
  • Depth: 32
  • Language: English
  • Returnable: Y
  • Spine Width: 37 mm
  • Weight: 956 gr
  • ISBN-10: 0470294523
  • Publisher Date: 12 Apr 2011
  • Binding: Hardback
  • Height: 236 mm
  • No of Pages: 544
  • Series Title: English
  • Sub Title: Fundamental Principles and Applications for Biologists, Chemists, Computer Scientists, and Nanotechnologists
  • Width: 163 mm


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Quantum Physics for Scientists and Technologists: Fundamental Principles and Applications for Biologists, Chemists, Computer Scientists, and Nanotechnologists
John Wiley & Sons -
Quantum Physics for Scientists and Technologists: Fundamental Principles and Applications for Biologists, Chemists, Computer Scientists, and Nanotechnologists
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Quantum Physics for Scientists and Technologists: Fundamental Principles and Applications for Biologists, Chemists, Computer Scientists, and Nanotechnologists

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!