Home > Mathematics and Science Textbooks > Physics > Materials / States of matter > Plasma physics > Quantum Statistics of Charged Particle Systems
Quantum Statistics of Charged Particle Systems

Quantum Statistics of Charged Particle Systems

          
5
4
3
2
1

Available


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

The year 1985 represents a special anniversary for people dealing with Ooulomb systems. 200 years ago, in 1785, Oharles Auguste de Ooulomb (1736-1806) found "Ooulomb's law" for the interaction force between charged particles. The authors want to dedicate this book to the honour of the great pioneer of electrophysics. Recent statistical mechanics is mainly restricted to systems of neutral particles. Except for a few monographs and survey articles (see, e. g., IOHIMARU, 1973, 1982; KUDRIN, 1974; KLIMONTOVIOH, 1975; EBELING, KRAEFT and KREMP, 1976, 1979; KALMAN and CARINI, 1978; BAUS and HANSEN, 1980; GILL, 1981, VELO and WIGHT- MAN, 1981; MATSUBARA, 1982) the extended material on charged particle systems, which is now available thanks to the efforts of many workers in statistical mechanics, is widely dispersed in many original articles. It is the aim of this monograph to represent at least some part of the known results on charged particle systems from a unified point of view. Here the method of Green's functions turns out to be a powerful method especially to overcome the difficulties connected with the statistical physics of charged particle systems; some of them are . mentioned in the introduction. Here we can point, e.g., to the appearance of bound states in a medium and their role as new entities.

Table of Contents:
1. Introduction.- 2. Physical Concepts and Exact Results.- 2.1. Basic Concepts for Coulomb Systems.- 2.2. Survey of Exact Quantum-Mechanical Results for Coulomb Systems.- 2.3. Survey of Exact Quantum-Statistical Results for Macroscopic Coulomb Systems.- 3. Quantum Statistics of Many-Particle Systems.- 3.1. Elements of Quantum Statistics.- 3.1.1. Quantum Mechanics of Many-Particle Systems.- 3.1.2. The Method of Second Quantization.- 3.1.3. Quantum Statistics. Density Operator.- 3.1.4. Reduced Density Operators. Bogolyubov Hierarchy.- 3.1.5. The Classical Limit, BBGKY Hierarchy.- 3.1.6. Systems in Thermodynamical Equilibrium.- 3.2. The Method of Green's Functions in Quantum Statistics.- 3.2.1. Definition of Green's Functions.- 3.2.2. General Properties of the Correlation Function and One-Particle Green's Function.- 3.2.3. Long Time Behaviour of Correlation Functions.- 3.2.4. Equation of Motion for the One-Particle Green's Function. Self Energy.- 3.2.5. Dynamical and Thermodynamical Information Contained in the Spectral Function A(p, w).- 3.2.6. The Two-Particle Green's Function.- 3.2.7. Equation of Motion for Higher Order Green's Functions.- 3.2.8. The Binary Collision Approximation (Ladder Approximation).- 3.2.9. T-Matrix and Thermodynamic Properties in Binary Collision Approximation.- 3.3. Quantum Statistics of Charged Many-Particle Systems.- 3.3.1. Basic Equations. Screening.- 3.3.2. Analytic Properties of Vs and ?.- 3.3.3. The "Random Phase Approximation" RPA.- 4. Application of the Green's Function Technique to Coulomb Systems.- 4.1. Types of Different Approximations.- 4.1.1. Diagram Representation of ? and ?.- 4.1.2. The RPA and the Vs-Approximation for the Self Energy.- 4.1.3. Many-Particle Complexes and T-Matrices.- 4.1.4. Cluster Formation and the Chemical Picture.- 4.1.5. Cluster Decomposition of the Self Energy.- 4.2. Dielectric Properties of Charged Particle Systems. Random Phase Approximation.- 4.2.1. Linear Response to External Perturbations. General Remarks.- 4.2.2. Properties of the RPA Dielectric Function.- 4.2.3. Plasma Oscillations (Plasmons).- 4.3. Single-Particle Excitations.- 4.3.1. Quasi-Particle Concept.- 4.3.2. Self Energy in Vs-Approximation.- 4.4. Two-Particle Properties in a Plasma.- 4.4.1. Bethe-Salpeter Equation for a Two-Particle Cluster.- 4.4.2. Solution of the Bethe-Salpeter Equation. Effective Wave Equation and Spectral Representations.- 4.4.3. Two-Particle States in the Dynamically Screened Ladder Approximation.- 4.4.4. Two-Particle States in Surrounding Medium in First Born Approximation.- 4.4.5. Numerical Results and Discussion of the Two-Particle States.- 4.5. Dielectric Function Including Bound States.- 4.5.1. Extended RPA Dielectric Function for a Partially Ionized Plasma.- 4.5.2. Limiting Behaviour of the Extended RPA Dielectric Function.- 4.5.3. Self Energy and Vertex Corrections to the Extended RPA Dielectric Function.- 4.5.4. Local Field Effects and Enhancement of the Dielectric Function.- 5. Equilibrium Properties in Classical and Quasiclassical Approximation.- 5.1. The One-Component Plasma Model.- 5.2. Many-Component Systems. Slater Sums.- 5.2.1. Partition Functions and Effective Potentials.- 5.2.2. Calculation of Slater Sums and Effective Potentials.- 5.3. The Pair Distribution Function.- 5.3.1. Basic Equations and Hierarchy.- 5.3.2. Discussion of the Pair Distribution.- 5.4. Thermodynamic Functions.- 5.4.1. Cluster Expansions of the Free Energy.- 5.4.2. Density Expansions of the Free Energy.- 6. Quantum-Statistical Calculations of Equilibrium Properties.- 6.1. Equation of State in the Screened Ladder Approximation.- 6.1.1. The Second Virial Coefficient.- 6.1.2. Evaluation of the Higher Order Contributions.- 6.1.3. Evaluation of the Hartree-Fock and the Montroll-Ward Contributions.- 6.2. Density and Chemical Potential in the Screened Ladder Approximation.- 6.2.1. Bound State and Quasiparticle Contributions.- 6.2.2. The Mass Action Law.- 6.3. One-Component Plasmas.- 6.3.1. Analytical Formulae for the Limiting Situations.- 6.3.2. Pade Interpolations between the Degenerate and the Nondegenerate Cases.- 6.3.3. Pade Approximations Including Higher Order Interaction Terms and Wigner Crystallization.- 6.4. Electron-Hole Plasmas.- 6.4.1. Analytical Results for the Plasma Model.- 6.4.2. Pade Approximations.- 6.4.3. Ionization Equilibrium.- 6.5. Hydrogen Plasmas.- 6.5.1. The Two-Fluid Model.- 6.5.2. Basic Formulae for the Limiting Situations and Pade Approximations.- 6.5.3. Ionization Equilibrium and Phase Diagram.- 6.6. Alkali Plasmas and Noble Gas Plasmas.- 6.6.1. Pseudopotentials.- 6.6.2. The Chemical Potential of the Neutral Component.- 6.6.3. The Chemical Potential of the Charged Component.- 6.6.4. Saha Equation and Ionization Equilibrium.- 7. Transport Properties.- 7.1. Linear Response Theory.- 7.1.1. Many-Body Effects and Transport Properties in Non-Ideal Plasmas.- 7.1.2. Transport Coefficients and Correlation Functions.- 7.1.3. Further Approaches.- 7.2. Evaluation of Collision Integrals Using Green's Functions.- 7.2.1. Green's Functions, Diagrams and Correlation Functions.- 7.2.2. Evaluation of Correlation Functions in First Born Approximation.- 7.2.3. Results for a Hydrogen Plasma.- 7.2.4. Inclusion of the Ionic Structure Factor.- 7.2.5. Dynamically Screened Second Born Approximation.- 7.2.6. Statically Screened T-Matrix Approximation. Results.- 7.3. Further Improvements of the Transport Theory.- 7.3.1. Self-Energy and Debye-Onsager Relaxation Effects.- 7.3.2. Hopping Conductivity.- 7.3.3. Concluding Remarks.- 8. Green's Function Approach to Optical Properties.- 8.1. General Formalism.- 8.1.1. Many-Body Theory of Absorption Spectra.- 8.1.2. Dielectric Function and Spectral Line Shape of Plasmas.- 8.1.3. Doppler Broadening.- 8.2. Evaluation of Line Shift and Broadening.- 8.2.1. Explicit Expressions for Shift and Broadening.- 8.2.2. Relation to the Impact Approximation.- 8.2.3. Shift of Spectral Lines in Dense Hydrogen Plasmas.- 8.2.4. Estimation of the Shift and Broadening of Spectral Lines for an Argon Plasma.- 8.3. Further Approaches and Concluding Remarks.- 9. References.- 10. Subject Index.


Best Sellers


Product Details
  • ISBN-13: 9780306421907
  • Publisher: Kluwer Academic Publishers Group
  • Publisher Imprint: Kluwer Academic / Plenum Publishers
  • Language: English
  • Returnable: N
  • Weight: 731 gr
  • ISBN-10: 0306421909
  • Publisher Date: 31 Jan 1986
  • Binding: Hardback
  • No of Pages: 308
  • Series Title: English


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Quantum Statistics of Charged Particle Systems
Kluwer Academic Publishers Group -
Quantum Statistics of Charged Particle Systems
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Quantum Statistics of Charged Particle Systems

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA