Home > Mathematics and Science Textbooks > Mathematics > Queueing Theory 1: Advanced Trends
14%
Queueing Theory 1: Advanced Trends

Queueing Theory 1: Advanced Trends

          
5
4
3
2
1

International Edition


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

The aim of this book is to reflect the current cutting-edge thinking and established practices in the investigation of queueing systems and networks. This first volume includes ten chapters written by experts well-known in their areas. The book studies the analysis of queues with interdependent arrival and service times, characteristics of fluid queues, modifications of retrial queueing systems and finite-source retrial queues with random breakdowns, repairs and customers’ collisions. Some recent tendencies in the asymptotic analysis include the average and diffusion approximation of Markov queueing systems and networks, the diffusion and Gaussian limits of multi-channel queueing networks with rather general input flow, and the analysis of two-time-scale nonhomogenous Markov chains using the large deviations principle. The book also analyzes transient behavior of infinite-server queueing models with a mixed arrival process, the strong stability of queueing systems and networks, and applications of fast simulation methods for solving high-dimension combinatorial problems.

Table of Contents:
Preface xi Chapter 1. Discrete Time Single-server Queues with Interdependent Interarrival and Service Times 1 Attahiru Sule ALFA 1.1. Introduction 1 1.2. The Geo/Geo/1 case 3 1.2.1. Arrival probability as a function of service completion probability 4 1.2.2. Service times dependent on interarrival times 6 1.3. The PH/PH/1 case 7 1.3.1. A review of discrete PH distribution 7 1.3.2. The PH/PH/1 system 9 1.4. The model with multiple interarrival time distributions 10 1.4.1. Preliminaries 11 1.4.2. A queueing model with interarrival times dependent on service times 13 1.5. Interdependent interarrival and service times 15 1.5.1. A discrete time queueing model with bivariate geometric distribution 16 1.5.2. Matrix equivalent model 17 1.6. Conclusion 18 1.7. Acknowledgements 18 1.8. References 18 Chapter 2. Busy Period, Congestion Analysis and Loss Probability in Fluid Queues 21 Fabrice GUILLEMIN, Marie-Ange REMICHE and Bruno SERICOLA 2.1. Introduction 21 2.2. Modeling a link under congestion and buffer fluctuations 24 2.2.1. Model description 25 2.2.2. Peaks and valleys 26 2.2.3. Minimum valley height in a busy period 28 2.2.4. Maximum peak level in a busy period 33 2.2.5. Maximum peak under a fixed fluid level 37 2.3. Fluid queue with finite buffer 42 2.3.1. Congestion metrics 42 2.3.2. Minimum valley height in a busy period 43 2.3.3. Reduction of the state space 46 2.3.4. Distributions of τ1(x) and V1(x) 47 2.3.5. Sequences of idle and busy periods 49 2.3.6. Joint distributions of loss periods and loss volumes 51 2.3.7. Total duration of losses and volume of information lost 56 2.4. Conclusion 59 2.5. References 60 Chapter 3. Diffusion Approximation of Queueing Systems and Networks 63 Dimitri KOROLIOUK and Vladimir S. KOROLIUK 3.1. Introduction 63 3.2. Markov queueing processes 64 3.3. Average and diffusion approximation 65 3.3.1. Average scheme 65 3.3.2. Diffusion approximation scheme 68 3.3.3. Stationary distribution 73 3.4. Markov queueing systems 78 3.4.1. Collective limit theorem in R1 78 3.4.2. Systems of M/M type 81 3.4.3. Repairman problem 82 3.5. Markov queueing networks 85 3.5.1. Collective limit theorems in RN 85 3.5.2. Markov queueing networks 89 3.5.3. Superposition of Markov processes 91 3.6. Semi–Markov queueing systems 92 3.7. Acknowledgements 96 3.8. References 96 Chapter 4. First-come First-served Retrial Queueing System by Laszlo Lakatos and its Modifications 97 Igor Nikolaevich KOVALENKO† 4.1. Introduction 97 4.2. A contribution by Laszlo Lakatos and his disciples 98 4.3. A contribution by E.V. Koba 98 4.4. An Erlangian and hyper-Erlangian approximation for a Laszlo Lakatos-type queueing system 99 4.5. Two models with a combined queueing discipline 102 4.6. References 104 Chapter 5. Parameter Mixing in Infinite-server Queues 107 Lucas VAN KREVELD and Onno BOXMA 5.1. Introduction 107 5.2. The MΛ/Coxn/∞ queue 109 5.2.1. The differential equation 110 5.2.2. Calculating moments 113 5.2.3. Steady state 120 5.2.4. MΛ/M/∞ 125 5.3. Mixing in Markov-modulated infinite-server queues 131 5.3.1. The differential equation 131 5.3.2. Calculating moments 133 5.4. Discussion and future work 142 5.5. References 143 Chapter 6. Application of Fast Simulation Methods of Queueing Theory for Solving Some High-dimension Combinatorial Problems 145 Igor KUZNETSOV and Nickolay KUZNETSOV 6.1. Introduction 146 6.2. Upper and lower bounds for the number of some k-dimensional subspaces of a given weight over a finite field 147 6.2.1. A general fast simulation algorithm 149 6.2.2. An auxiliary algorithm 153 6.2.3. Exact analytical formulae for the cases k = 1 and k = 2 155 6.2.4. The upper and lower bounds for the probability P{Yω(r)} 158 6.2.5. Numerical results 164 6.3. Evaluation of the number of “good” permutations by fast simulation on the SCIT-4 multiprocessor computer complex 167 6.3.1. Modified fast simulation method 168 6.3.2. Numerical results 171 6.4. References 174 Chapter 7. Diffusion and Gaussian Limits for Multichannel Queueing Networks 177 Eugene LEBEDEV and Hanna LIVINSKA 7.1. Introduction 177 7.2. Model description and notation 182 7.3. Local approach to prove limit theorems 184 7.3.1. Network of the [GI|M|∞]r-type in heavy traffic 185 7.4. Limit theorems for networks with controlled input flow 190 7.4.1. Diffusion approximation of [SM|M|∞]r-networks 190 7.4.2. Asymptotics of stationary distribution for [SM|GI|∞]r-networks 192 7.4.3. Convergence to Ornstein–Uhlenbeck process 194 7.5. Gaussian approximation of networks with input flow of general structure 195 7.5.1. Gaussian approximation of [G|M|∞]r-networks 195 7.5.2. Criterion of Markovian behavior for r-dimensional Gaussian processes 197 7.5.3. Non-Markov Gaussian approximation of [G|GI|∞]r-networks 198 7.6. Limit processes for network with time-dependent input flow 201 7.6.1. Gaussian approximation of [Mt|M|∞]r -networks in heavy traffic 201 7.6.2. Limit process in case of asymptotically large initial load 205 7.7. Conclusion 207 7.8. Acknowledgements 208 7.9. References 208 Chapter 8. Recent Results in Finite-source Retrial Queues with Collisions 213 Anatoly NAZAROV, János SZTRIK and Anna KVACH 8.1. Introduction 213 8.2. Model description and notations 216 8.3. Systems with a reliable server 220 8.3.1. M/M/1 systems 220 8.3.2. M/GI/1 system 224 8.4. Systems with an unreliable server 229 8.4.1. M/M/1 system 229 8.4.2. M/GI/1 system 237 8.4.3. Stochastic simulation of special systems 240 8.4.4. Gamma distributed retrial times 242 8.4.5. The effect of breakdowns disciplines 243 8.5. Conclusion 251 8.6. Acknowledgments 253 8.7. References 253 Chapter 9. Strong Stability of Queueing Systems and Networks: a Survey and Perspectives 259 Boualem RABTA, Ouiza LEKADIR and Djamil AÏSSANI 9.1. Introduction 259 9.2. Preliminary and notations 261 9.3. Strong stability of queueing systems 263 9.3.1. M/M/1 queue 264 9.3.2. PH/M/1 and M/PH/1 queues 269 9.3.3. G/M/1 and M/G/1 queues 270 9.3.4. Other queues 276 9.3.5. Queueing networks 277 9.3.6. Non-parametric perturbation 286 9.4. Conclusion and further directions 287 9.5. References 287 Chapter 10. Time-varying Queues: a Two-time-scale Approach 293 George YIN, Hanqin ZHANG and Qing ZHANG 10.1. Introduction 293 10.2. Time-varying queues 295 10.3. Main results 298 10.3.1. Large deviations of two-time-scale queues 298 10.3.2. Computation of H(y, t) 301 10.3.3. Applications to queueing systems 303 10.4. Concluding remarks 309 10.5. References 310 List of Authors 313 Index 315


Best Sellers


Product Details
  • ISBN-13: 9781789450019
  • Publisher: ISTE Ltd
  • Publisher Imprint: ISTE Ltd
  • Height: 10 mm
  • No of Pages: 336
  • Spine Width: 10 mm
  • Weight: 693 gr
  • ISBN-10: 1789450012
  • Publisher Date: 22 Jun 2021
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Sub Title: Advanced Trends
  • Width: 10 mm


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Queueing Theory 1: Advanced Trends
ISTE Ltd -
Queueing Theory 1: Advanced Trends
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Queueing Theory 1: Advanced Trends

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA