close menu
Bookswagon-24x7 online bookstore
close menu
My Account
5%
Random Data: Analysis and Measurement Procedures(Wiley Series in Probability and Statistics)

Random Data: Analysis and Measurement Procedures(Wiley Series in Probability and Statistics)

          
5
4
3
2
1

Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

RANDOM DATA

A TIMELY UPDATE OF THE CLASSIC BOOK ON THE THEORY AND APPLICATION OF RANDOM DATA ANALYSIS

First published in 1971, Random Data served as an authoritative book on the analysis of experimental physical data for engineering and scientific applications. This Fourth Edition features coverage of new developments in random data management and analysis procedures that are applicable to a broad range of applied fields, from the aerospace and automotive industries to oceanographic and biomedical research.

This new edition continues to maintain a balance of classic theory and novel techniques. The authors expand on the treatment of random data analysis theory, including derivations of key relationships in probability and random process theory. The book remains unique in its practical treatment of nonstationary data analysis and nonlinear system analysis, presenting the latest techniques on modern data acquisition, storage, conversion, and qualification of random data prior to its digital analysis. The Fourth Edition also includes:

  • A new chapter on frequency domain techniques to model and identify nonlinear systems from measured input/output random data
  • New material on the analysis of multiple-input/single-output linear models
  • The latest recommended methods for data acquisition and processing of random data
  • Important mathematical formulas to design experiments and evaluate results of random data analysis and measurement procedures
  • Answers to the problem in each chapter

Comprehensive and self-contained, Random Data, Fourth Edition is an indispensible book for courses on random data analysis theory and applications at the upper-under-graduate and graduate level. It is also an insightful reference for engineers and scientists who use statistical methods to investigate and solve problems with dynamic data.



Table of Contents:

Preface xv

Preface to the Third Edition xvii

Glossary of Symbols xix

1. Basic Descriptions and Properties 1

1.1. Deterministic Versus Random Data 1

1.2. Classifications of Deterministic Data 3

1.2.1. Sinusoidal Periodic Data 3

1.2.2. Complex Periodic Data 4

1.2.3. Almost-Periodic Data 6

1.2.4. Transient Nonperiodic Data 7

1.3. Classifications of Random Data 8

1.3.1. Stationary Random Data 9

1.3.2. Ergodic Random Data 11

1.3.3. Nonstationary Random Data 12

1.3.4. Stationary Sample Records 12

1.4. Analysis of Random Data 13

1.4.1. Basic Descriptive Properties 13

1.4.2. Input/Output Relations 19

1.4.3. Error Analysis Criteria 21

1.4.4. Data Analysis Procedures 23

2. Linear Physical Systems 25

2.1. Constant-Parameter Linear Systems 25

2.2. Basic Dynamic Characteristics 26

2.3. Frequency Response Functions 28

2.4. Illustrations of Frequency Response Functions 30

2.4.1. Mechanical Systems 30

2.4.2. Electrical Systems 39

2.4.3. Other Systems 41

2.5. Practical Considerations 41

3. Probability Fundamentals 45

3.1. One Random Variable 45

3.1.1. Probability Density and Distribution Functions 46

3.1.2. Expected Values 49

3.1.3. Change of Variables 50

3.1.4. Moment-Generating and Characteristic Functions 52

3.1.5. Chebyshev’s Inequality 53

3.2. Two Random Variables 54

3.2.1. Expected Values and Correlation Coefficient 55

3.2.2. Distribution for Sum of Two Random Variables 56

3.2.3. Joint Moment-Generating and Characteristic Functions 57

3.3. Gaussian (Normal) Distribution 59

3.3.1. Central Limit Theorem 60

3.3.2. Joint Gaussian (Normal) Distribution 62

3.3.3. Moment-Generating and Characteristic Functions 63

3.3.4. N-Dimensional Gaussian (Normal) Distribution 64

3.4. Rayleigh Distribution 67

3.4.1. Distribution of Envelope and Phase for Narrow Bandwidth Data 67

3.4.2. Distribution of Output Record for Narrow Bandwidth Data 71

3.5. Higher Order Changes of Variables 72

4. Statistical Principles 79

4.1. Sample Values and Parameter Estimation 79

4.2. Important Probability Distribution Functions 82

4.2.1. Gaussian (Normal) Distribution 82

4.2.2. Chi-Square Distribution 83

4.2.3. The t Distribution 84

4.2.4. The F Distribution 84

4.3. Sampling Distributions and Illustrations 85

4.3.1. Distribution of Sample Mean with Known Variance 85

4.3.2. Distribution of Sample Variance 86

4.3.3. Distribution of Sample Mean with Unknown Variance 87

4.3.4. Distribution of Ratio of Two Sample Variances 87

4.4. Confidence Intervals 88

4.5. Hypothesis Tests 91

4.5.1. Chi-Square Goodness-of-Fit Test 94

4.5.2. Nonparametric Trend Test 96

4.6. Correlation and Regression Procedures 99

4.6.1. Linear Correlation Analysis 99

4.6.2. Linear Regression Analysis 102

5. Stationary Random Processes 109

5.1. Basic Concepts 109

5.1.1. Correlation (Covariance) Functions 111

5.1.2. Examples of Autocorrelation Functions 113

5.1.3. Correlation Coefficient Functions 115

5.1.4. Cross-Correlation Function for Time Delay 116

5.2. Spectral Density Functions 118

5.2.1. Spectra via Correlation Functions 118

5.2.2. Spectra via Finite Fourier Transforms 126

5.2.3. Spectra via Filtering–Squaring–Averaging 129

5.2.4. Wavenumber Spectra 132

5.2.5. Coherence Functions 134

5.2.6. Cross-Spectrum for Time Delay 135

5.2.7. Location of Peak Value 137

5.2.8. Uncertainty Relation 138

5.2.9. Uncertainty Principle and Schwartz Inequality 140

5.3. Ergodic and Gaussian Random Processes 142

5.3.1. Ergodic Random Processes 142

5.3.2. Sufficient Condition for Ergodicity 145

5.3.3. Gaussian Random Processes 147

5.3.4. Linear Transformations of Random Processes 149

5.4. Derivative Random Processes 151

5.4.1. Correlation Functions 151

5.4.2. Spectral Density Functions 154

5.5. Level Crossings and Peak Values 155

5.5.1. Expected Number of Level Crossings per Unit Time 155

5.5.2. Peak Probability Functions for Narrow Bandwidth Data 159

5.5.3. Expected Number and Spacing of Positive Peaks 161

5.5.4. Peak Probability Functions for Wide Bandwidth Data 162

5.5.5. Derivations 164

6. Single-Input/Output Relationships 173

6.1. Single-Input/Single-Output Models 173

6.1.1. Correlation and Spectral Relations 173

6.1.2. Ordinary Coherence Functions 180

6.1.3. Models with Extraneous Noise 183

6.1.4. Optimum Frequency Response Functions 187

6.2. Single-Input/Multiple-Output Models 190

6.2.1. Single-Input/Two-Output Model 191

6.2.2. Single-Input/Multiple-Output Model 192

6.2.3. Removal of Extraneous Noise 194

7. Multiple-Input/Output Relationships 201

7.1. Multiple-Input/Single-Output Models 201

7.1.1. General Relationships 202

7.1.2. General Case of Arbitrary Inputs 205

7.1.3. Special Case of Mutually Uncorrelated Inputs 206

7.2. Two-Input/One-Output Models 207

7.2.1. Basic Relationships 207

7.2.2. Optimum Frequency Response Functions 210

7.2.3. Ordinary and Multiple Coherence Functions 212

7.2.4. Conditioned Spectral Density Functions 213

7.2.5. Partial Coherence Functions 219

7.3. General and Conditioned Multiple-Input Models 221

7.3.1. Conditioned Fourier Transforms 223

7.3.2. Conditioned Spectral Density Functions 224

7.3.3. Optimum Systems for Conditioned Inputs 225

7.3.4. Algorithm for Conditioned Spectra 226

7.3.5. Optimum Systems for Original Inputs 229

7.3.6. Partial and Multiple Coherence Functions 231

7.4. Modified Procedure to Solve Multiple-Input/Single-Output Models 232

7.4.1. Three-Input/Single-Output Models 234

7.4.2. Formulas for Three-Input/Single-Output Models 235

7.5. Matrix Formulas for Multiple-Input/Multiple-Output Models 237

7.5.1. Multiple-Input/Multiple-Output Model 238

7.5.2. Multiple-Input/Single-Output Model 241

7.5.3. Model with Output Noise 243

7.5.4. Single-Input/Single-Output Model 245

8. Statistical Errors in Basic Estimates 249

8.1. Definition of Errors 249

8.2. Mean and Mean Square Value Estimates 252

8.2.1. Mean Value Estimates 252

8.2.2. Mean Square Value Estimates 256

8.2.3. Variance Estimates 260

8.3. Probability Density Function Estimates 261

8.3.1. Bias of the Estimate 263

8.3.2. Variance of the Estimate 264

8.3.3. Normalized rms Error 265

8.3.4. Joint Probability Density Function Estimates 265

8.4. Correlation Function Estimates 266

8.4.1. Bandwidth-Limited Gaussian White Noise 269

8.4.2. Noise-to-Signal Considerations 270

8.4.3. Location Estimates of Peak Correlation Values 271

8.5. Autospectral Density Function Estimates 273

8.5.1. Bias of the Estimate 274

8.5.2. Variance of the Estimate 278

8.5.3. Normalized rms Error 278

8.5.4. Estimates from Finite Fourier Transforms 280

8.5.5. Test for Equivalence of Autospectra 282

8.6. Record Length Requirements 284

9. Statistical Errors in Advanced Estimates 289

9.1. Cross-Spectral Density Function Estimates 289

9.1.1. Variance Formulas 292

9.1.2. Covariance Formulas 293

9.1.3. Phase Angle Estimates 297

9.2. Single-Input/Output Model Estimates 298

9.2.1. Bias in Frequency Response Function Estimates 300

9.2.2. Coherent Output Spectrum Estimates 303

9.2.3. Coherence Function Estimates 305

9.2.4. Gain Factor Estimates 308

9.2.5. Phase Factor Estimates 310

9.3. Multiple-Input/Output Model Estimates 312

10. Data Acquisition and Processing 317

10.1. Data Acquisition 318

10.1.1. Transducer and Signal Conditioning 318

10.1.2. Data Transmission 321

10.1.3. Calibration 322

10.1.4. Dynamic Range 324

10.2. Data Conversion 326

10.2.1. Analog-to-Digital Converters 326

10.2.2. Sampling Theorems for Random Records 328

10.2.3. Sampling Rates and Aliasing Errors 330

10.2.4. Quantization and Other Errors 333

10.2.5. Data Storage 335

10.3. Data Qualification 335

10.3.1. Data Classification 336

10.3.2. Data Validation 340

10.3.3. Data Editing 345

10.4. Data Analysis Procedures 349

10.4.1. Procedure for Analyzing Individual Records 349

10.4.2. Procedure for Analyzing Multiple Records 351

11. Data Analysis 359

11.1. Data Preparation 359

11.1.1. Data Standardization 360

11.1.2. Trend Removal 361

11.1.3. Digital Filtering 363

11.2. Fourier Series and Fast Fourier Transforms 366

11.2.1. Standard Fourier Series Procedure 366

11.2.2. Fast Fourier Transforms 368

11.2.3. Cooley–Tukey Procedure 374

11.2.4. Procedures for Real-Valued Records 376

11.2.5. Further Related Formulas 377

11.2.6. Other Algorithms 378

11.3. Probability Density Functions 379

11.4. Autocorrelation Functions 381

11.4.1. Autocorrelation Estimates via Direct Computations 381

11.4.2. Autocorrelation Estimates via FFT Computations 381

11.5. Autospectral Density Functions 386

11.5.1. Autospectra Estimates by Ensemble Averaging 386

11.5.2. Side-Lobe Leakage Suppression Procedures 388

11.5.3. Recommended Computational Steps for Ensemble-Averaged Estimates 395

11.5.4. Zoom Transform Procedures 396

11.5.5. Autospectra Estimates by Frequency Averaging 399

11.5.6. Other Spectral Analysis Procedures 403

11.6. Joint Record Functions 404

11.6.1. Joint Probability Density Functions 404

11.6.2. Cross-Correlation Functions 405

11.6.3. Cross-Spectral Density Functions 406

11.6.4. Frequency Response Functions 407

11.6.5. Unit Impulse Response (Weighting) Functions 408

11.6.6. Ordinary Coherence Functions 408

11.7. Multiple-Input/Output Functions 408

11.7.1. Fourier Transforms and Spectral Functions 409

11.7.2. Conditioned Spectral Density Functions 409

11.7.3. Three-Input/Single-Output Models 411

11.7.4. Functions in Modified Procedure 414

12. Nonstationary Data Analysis 417

12.1. Classes of Nonstationary Data 417

12.2. Probability Structure of Nonstationary Data 419

12.2.1. Higher Order Probability Functions 420

12.2.2. Time-Averaged Probability Functions 421

12.3. Nonstationary Mean Values 422

12.3.1. Independent Samples 424

12.3.2. Correlated Samples 425

12.3.3. Analysis Procedures for Single Records 427

12.4. Nonstationary Mean Square Values 429

12.4.1. Independent Samples 429

12.4.2. Correlated Samples 431

12.4.3. Analysis Procedures for Single Records 432

12.5. Correlation Structure of Nonstationary Data 436

12.5.1. Double-Time Correlation Functions 436

12.5.2. Alternative Double-Time Correlation Functions 437

12.5.3. Analysis Procedures for Single Records 439

12.6. Spectral Structure of Nonstationary Data 442

12.6.1. Double-Frequency Spectral Functions 443

12.6.2. Alternative Double-Frequency Spectral Functions 445

12.6.3. Frequency Time Spectral Functions 449

12.6.4. Analysis Procedures for Single Records 456

12.7. Input/Output Relations for Nonstationary Data 462

12.7.1. Nonstationary Input and Time-Varying Linear System 463

12.7.2. Results for Special Cases 464

12.7.3. Frequency–Time Spectral Input/Output Relations 465

12.7.4. Energy Spectral Input/Output Relations 467

13. The Hilbert Transform 473

13.1. Hilbert Transforms for General Records 473

13.1.1. Computation of Hilbert Transforms 476

13.1.2. Examples of Hilbert Transforms 477

13.1.3. Properties of Hilbert Transforms 478

13.1.4. Relation to Physically Realizable Systems 480

13.2. Hilbert Transforms for Correlation Functions 484

13.2.1. Correlation and Envelope Definitions 484

13.2.2. Hilbert Transform Relations 486

13.2.3. Analytic Signals for Correlation Functions 486

13.2.4. Nondispersive Propagation Problems 489

13.2.5. Dispersive Propagation Problems 495

13.3. Envelope Detection Followed by Correlation 498

14. Nonlinear System Analysis 505

14.1. Zero-Memory and Finite-Memory Nonlinear Systems 505

14.2. Square-Law and Cubic Nonlinear Models 507

14.3. Volterra Nonlinear Models 509

14.4. SI/SO Models with Parallel Linear and Nonlinear Systems 510

14.5. SI/SO Models with Nonlinear Feedback 512

14.6. Recommended Nonlinear Models and Techniques 514

14.7. Duffing SDOF Nonlinear System 515

14.7.1. Analysis for SDOF Linear System 516

14.7.2. Analysis for Duffing SDOF Nonlinear System 518

14.8. Nonlinear Drift Force Model 520

14.8.1. Basic Formulas for Proposed Model 521

14.8.2. Spectral Decomposition Problem 523

14.8.3. System Identification Problem 524

Bibliography 527

Appendix A: Statistical Tables 533

Appendix B: Definitions for Random Data Analysis 545

List of Figures 557

List of Tables 565

List of Examples 567

Answers to Problems in Random Data 571

Index 599


Best Seller

| | See All

Product Details
  • ISBN-13: 9780470248775
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: John Wiley & Sons Inc
  • Depth: 32
  • Height: 244 mm
  • No of Pages: 640
  • Series Title: Wiley Series in Probability and Statistics
  • Sub Title: Analysis and Measurement Procedures
  • Width: 165 mm
  • ISBN-10: 0470248777
  • Publisher Date: 05 Mar 2010
  • Binding: Hardback
  • Edition: 4
  • Language: English
  • Returnable: N
  • Spine Width: 38 mm
  • Weight: 997 gr


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Be The First to Review
Random Data: Analysis and Measurement Procedures(Wiley Series in Probability and Statistics)
John Wiley & Sons Inc -
Random Data: Analysis and Measurement Procedures(Wiley Series in Probability and Statistics)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Random Data: Analysis and Measurement Procedures(Wiley Series in Probability and Statistics)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    | | See All


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA