Home > Mathematics and Science Textbooks > Physics > Classical mechanics > Wave mechanics (vibration and acoustics) > Short-Wavelength Diffraction Theory: Asymptotic Methods(Vol 4 Springer Series on Wave Phenomena)
44%
Short-Wavelength Diffraction Theory: Asymptotic Methods(Vol 4 Springer Series on Wave Phenomena)

Short-Wavelength Diffraction Theory: Asymptotic Methods(Vol 4 Springer Series on Wave Phenomena)

          
5
4
3
2
1

Out of Stock


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Notify me when this book is in stock
Add to Wishlist

About the Book

In the study of short-wave diffraction problems, asymptotic methods - the ray method, the parabolic equation method, and its further development as the "etalon" (model) problem method - play an important role. These are the meth- ods to be treated in this book. The applications of asymptotic methods in the theory of wave phenomena are still far from being exhausted, and we hope that the techniques set forth here will help in solving a number of problems of interest in acoustics, geophysics, the physics of electromagnetic waves, and perhaps in quantum mechanics. In addition, the book may be of use to the mathematician interested in contemporary problems of mathematical physics. Each chapter has been annotated. These notes give a brief history of the problem and cite references dealing with the content of that particular chapter. The main text mentions only those pUblications that explain a given argument or a specific calculation. In an effort to save work for the reader who is interested in only some of the problems considered in this book, we have included a flow chart indicating the interdependence of chapters and sections.

Table of Contents:
1. Introduction.- 2. The Ray Method.- 2.1 The Basic Principles.- 2.2 Variational Theory of the Fermat Functional.- 2.3 The Solution of the Eikonal Equation; Ray Coordinates and the Geometrical Divergence.- 2.4 Integration of the Transport Equations.- 2.5 Maxwell's Equations.- 2.6 Determining the Short-Wavelength Asymptotic Solution of a Diffraction Problem Using the Ray Method - An Example.- 2.7 Determination of the Function ?0 by Using the Localization Principle.- 2.8 Caustics.- 2.9 Notes on the Literature.- 3. The Field Near a Caustic.- 3.1 Preliminary Remarks.- 3.2 The Etalon Problem for Caustics.- 3.3 The Ray Field and Eikonal in the Neighborhood of a Caustic.- 3.4 Derivation of the Recurrence Relations.- 3.5 The Field in the Vicinity of a Caustic - First Approximation.- 3.6 Determination of Aj and Bj for j > 0.- 3.7 Determination of the ?j.- 3.8 Notes on the Literature.- 4. Derivation of Asymptotic Formulas for Eigenvalues and Eigenfunctions Using the Ray Method.- 4.1 Introductory Remarks.- 4.2 Multi-Sheeted Covering Spaces.- 4.3 Single-Valuedness of the Eigenfunctions and Quantization Conditions.- 4.4 Eigenvalues and Eigenfunctions of a Circle.- 4.5 Eigenvalues of an Ellipse.- 4.6 Notes on the Literature.- 5. The Ray Method "in the Small".- 5.1 Eigenfunctions of the Whispering Gallery Type.- 5.2 Eigenvalues of the Bouncing Ball Type.- 5.3 Eigenvalues of the Whispering Gallery Type for a Nonconstant Wave Velocity.- 5.4 Eigenvalues of the Bouncing Ball Type for a Nonconstant Wave Velocity.- 5.5 Notes on the Literature.- 6. The Parabolic Equation Method.- 6.1 Introductory Remarks.- 6.2 Derivation of the Parabolic Equation for Eigenfunctions of the Whispering Gallery Type.- 6.3 Solution of the Parabolic Equation (6.2.9); Asymptotic Expansion of Eigenfunctions of the Whispering Gallery Type.- 6.4 Derivation of the Basic Parabolic Equation for the Case Where S Is a Ray.- 6.5 Solution of the Parabolic Equation (6.4.8).- 6.6 Notes on the Literature.- 7. Asymptotic Expansions of Eigenfunctions Concentrated Close to the Boundary of a Region.- 7.1 Introductory Remarks.- 7.2 Eigenfunctions of the Circle for the Case c = const.- 7.3 Construction of Solutions of the Helmholtz Equation in a Boundary Layer.- 7.4 Eigenfunctions of the Whispering Gallery Type.- 7.5 Eigenfunctions of the Region Exterior to ?.- 7.6 Justification of the Asymptotic Formulas.- 7.7 Notes on the Literature.- 8. Eigenfunctions Concentrated in the Neighborhood of an Extremal Ray of a Region.- 8.1 The Etalon Problem.- 8.2 Construction of the Principal Terms of the Formal Series.- 8.3 Construction of the Polynomials ?m and ?m, m ? 1.- 8.4 Basic Results and Some of Their Consequences.- 8.5 Formulation of the Boundary Value Problem and Derivation of the Eigenvalue Equation.- 8.6 Formulas for Eigenvalues and Eigenfunctions in the First Approximation.- 8.7 Procedure for Constructing the Polynomials ?m(s, ?) and ?m(s, ?) for m ? 1.- 8.8 Natural Frequencies of an Open Resonator (Inhomogeneous Filling, Higher Approximations).- 8.9 Notes on the Literature.- 9. Eigenfunctions Concentrated in the Vicinity of a Closed Geodesic.- 9.1 Formulation of the Problem and Derivation of the Parabolic Equation.- 9.2 The Jacobi Equation for the Geodesic l.- 9.3 The Zero-Order Approximation.- 9.4 Construction of the Higher Approximations.- 9.5 The Eigenfunction Problem in a Three-Dimensional Region.- 9.6 Asymptotic Solution of a System of Elliptic Equations on a Riemannian Manifold, Concentrated Near a Ray.- 9.7 Notes on the Literature.- 10. Multiple-Mirror Resonators.- 10.1 The Multiple-Mirror Resonator and Formulation of the Problem.- 10.2 Conditions of Resonator Stability in the First Approximation.- 10.3 Some Properties of the Solutions of (10.2.16) on lN.- 10.4 Formulation of the Parabolic Equation for the Problem.- 10.5 Integration of the Equation LV = 0.- 10.6 Eigenfunctions and Natural Frequencies of a Multiple-Mirror Resonator in the First Approximation.- 10.7 Construction of the Higher Approximations.- 10.8 Notes on the Literature.- 11. The Field of a Point Source Located Near a Convex Curve.- 11.1 Introduction.- 11.2 The Green's Function for the Exterior of a Circle.- 11.3 Creeping Waves Near a Curve with Positive Curvature and Their Extension to Arbitrary Distances.- 11.4 An Expression for the Green's Function in Terms of Creeping Waves.- 11.5 The Green's Function for the Diffraction Problem at a Cylinder with Variable Impedance.- 11.6 Notes on the Literature.- 12. Asymptotic Expansion of the Green's Function for a Surface Source (the Internal Problem).- 12.1 Formulation of the Problem and Physical Assumptions.- 12.2 The Ray Formula for Multiply Reflected Waves.- 12.3 Refinement of the Ray Formula.- 12.4 Field of a Source Located on the Boundary of a Circle.- 12.5 Field of a Surface Source Close to the Concave Boundary of an Inhomogeneous Body.- 12.6 Notes on the Literature.- 13. The High-Frequency Asymptotics of the Field Scattered by a Smooth Body.- 13.1 The Etalon Problem.- 13.2 Construction of Approximate Caustic Sums - Equations for the Expansion Coefficients.- 13.3 Asymptotic Evaluation of the Integral I1, in the Vicinity of the Terminator C.- 13.4 Choice of the Initial Data; Fock's Formula.- 13.5 Transformation of the Integrals I1 and I2 in the Neighborhood of the Light-Shadow Boundary.- 13.6 Calculation of the Derivatives of ?+(M, ?) and u+(M, ?) on ?+.- 13.7 The Fresnel-Fock Formula in the Neighborhood of the Light-Shadow Boundary.- 13.8 Asymptotics of the Field in the Deep Shadow.- 13.9 Notes on the Literature.- A.1. The Airy Equation and Airy Functions.- A.2. Nonorthogonal Curvilinear Coordinate Systems.- References.


Best Sellers


Product Details
  • ISBN-13: 9783540191896
  • Publisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
  • Publisher Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Edition: Annotated edition
  • Language: Russian
  • Returnable: N
  • Sub Title: Asymptotic Methods
  • Width: 155 mm
  • ISBN-10: 3540191895
  • Publisher Date: 28 Mar 1991
  • Binding: Hardback
  • Height: 235 mm
  • No of Pages: 445
  • Series Title: Vol 4 Springer Series on Wave Phenomena
  • Weight: 840 gr


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Short-Wavelength Diffraction Theory: Asymptotic Methods(Vol 4 Springer Series on Wave Phenomena)
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG -
Short-Wavelength Diffraction Theory: Asymptotic Methods(Vol 4 Springer Series on Wave Phenomena)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Short-Wavelength Diffraction Theory: Asymptotic Methods(Vol 4 Springer Series on Wave Phenomena)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA