Home > Science, Technology & Agriculture > Electronics and communications engineering > Smart Grid Communication Infrastructures: Big Data, Cloud Computing, and Security(IEEE Press)
Smart Grid Communication Infrastructures: Big Data, Cloud Computing, and Security(IEEE Press)

Smart Grid Communication Infrastructures: Big Data, Cloud Computing, and Security(IEEE Press)

          
5
4
3
2
1

Available


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

A comprehensive resource that covers all the key areas of smart grid communication infrastructures Smart grid is a transformational upgrade to the traditional power grid that adds communication capabilities, intelligence and modern control. Smart Grid Communication Infrastructures is a comprehensive guide that addresses communication infrastructures, related applications and other issues related to the smart grid. The text shows how smart grid departs from the traditional power grid technology. Fundamentally, smart grid has advanced communication infrastructures to achieve two-way information exchange between service providers and customers. Grid operations in smart grid have proven to be more efficient and more secure because of the communication infrastructures and modern control. Smart Grid Communication Infrastructures examines and summarizes the recent advances in smart grid communications, big data analytics and network security. The authors – noted experts in the field – review the technologies, applications and issues in smart grid communication infrastructure. This important resource: Offers a comprehensive review of all areas of smart grid communication infrastructures Includes an ICT framework for smart grid Contains a review of self-sustaining wireless neighborhood that are network designed Presents design and analysis of a wireless monitoring network for transmission lines in smart grid Written for graduate students, professors, researchers, scientists, practitioners and engineers, Smart Grid Communication Infrastructures is the comprehensive resource that explores all aspects of the topic. 

Table of Contents:
1 Background of the Smart Grid 1 1.1 Motivations and Objectives of the Smart Grid 1 1.1.1 Better Renewable Energy Resource Adaption 2 1.1.2 Grid Operation Efficiency Advancement 3 1.1.3 Grid Reliability and Security Improvement 4 1.2 Smart Grid Communications Architecture 5 1.2.1 Conceptual Domain Model 6 1.2.2 Two-Way Communications Network 7 1.3 Applications and Requirements 9 1.3.1 Demand Response 9 1.3.2 Advanced Metering Infrastructure 10 1.3.3 Wide-Area Situational Awareness and Wide-Area Monitoring Systems 11 1.3.4 Communication Networks and Cybersecurity 12 1.4 The Rest of the Book 13 2 Smart Grid Communication Infrastructures 15 2.1 An ICT Framework for the Smart Grid 15 2.1.1 Roles and Benefits of an ICT Framework 15 2.1.2 An Overview of the Proposed ICT Framework 16 2.2 Entities in the ICT Framework 18 2.2.1 Internal Data Collectors 18 2.2.2 Control Centers 20 2.2.3 Power Generators 22 2.2.4 External Data Sources 23 2.3 Communication Networks and Technologies 23 2.3.1 Private and Public Networks 23 2.3.2 Communication Technologies 24 2.4 Data Communication Requirements 30 2.4.1 Latency and Bandwidth 31 2.4.2 Interoperability 32 2.4.3 Scalability 32 2.4.4 Security 32 2.5 Summary 33 3 Self-Sustaining Wireless Neighborhood-Area Network Design 35 3.1 Overview of the Proposed NAN 35 3.1.1 Background and Motivation of a Self-Sustaining Wireless NAN 35 3.1.2 Structure of the Proposed NAN 37 3.2 Preliminaries 38 3.2.1 Charging Rate Estimate 39 3.2.2 Battery-Related Issues 40 3.2.3 Path Loss Model 42 3.3 Problem Formulations and Solutions in the NAN Design 44 3.3.1 The Cost Minimization Problem 44 3.3.2 Optimal Number of Gateways 48 3.3.3 Geographical Deployment Problem for Gateway DAPs 51 3.3.4 Global Uplink Transmission Power Efficiency 54 3.4 Numerical Results 56 3.4.1 Evaluation of the Optimal Number of Gateways 56 3.4.2 Evaluation of the Global Power Efficiency 56 3.4.3 Evaluation of the Global Uplink Transmission Rates 58 3.4.4 Evaluation of the Global Power Consumption 59 3.4.5 Evaluation of the Minimum Cost Problem 59 3.5 Case Study 63 3.6 Summary 65 4 Reliable Energy-Efficient Uplink Transmission Power Control Scheme in NAN 67 4.1 Background and Related Work 67 4.1.1 Motivations and Background 67 4.1.2 Related Work 69 4.2 System Model 70 4.3 Preliminaries 71 4.3.1 Mathematical Formulation 72 4.3.2 Energy Efficiency Utility Function 73 4.4 Hierarchical Uplink Transmission Power Control Scheme 75 4.4.1 DGD Level Game 76 4.4.2 BGD Level Game 77 4.5 Analysis of the Proposed Schemes 78 4.5.1 Estimation of B and D 78 4.5.2 Analysis of the Proposed Stackelberg Game 80 4.5.3 Algorithms to Approach NE and SE 84 4.6 Numerical Results 85 4.6.1 Simulation Settings 85 4.6.2 Estimate of D and B 86 4.6.3 Data Rate Reliability Evaluation 87 4.6.4 Evaluation of the Proposed Algorithms to Achieve NE and SE 88 4.7 Summary 90 5 Design and Analysis of a Wireless Monitoring Network for Transmission Lines in the Smart Grid 91 5.1 Background and Related Work 91 5.1.1 Background and Motivation 91 5.1.2 Related Work 93 5.2 Network Model 94 5.3 Problem Formulation 96 5.4 Proposed Power Allocation Schemes 99 5.4.1 Minimizing Total Power Usage 100 5.4.2 Maximizing Power Efficiency 101 5.4.3 Uniform Delay 104 5.4.4 Uniform Transmission Rate 104 5.5 Distributed Power Allocation Schemes 105 5.6 Numerical Results and A Case Study 107 5.6.1 Simulation Settings 107 5.6.2 Comparison of the Centralized Schemes 108 5.6.3 Case Study 113 5.7 Summary 113 6 A Real-Time Information-Based Demand-Side Management System 115 6.1 Background and Related Work 115 6.1.1 Background 115 6.1.2 Related Work 117 6.2 System Model 118 6.2.1 The Demand-Side Power Management System 118 6.2.2 Mathematical Modeling 120 6.2.3 Energy Cost and Unit Price 122 6.3 Centralized DR Approaches 124 6.3.1 Minimize Peak-to-Average Ratio 124 6.3.2 Minimize Total Cost of Power Generation 125 6.4 Game Theoretical Approaches 128 6.4.1 Formulated Game 128 6.4.2 Game Theoretical Approach 1: Locally Computed Smart Pricing 129 6.4.3 Game Theoretical Approach 2: Semifixed Smart Pricing 131 6.4.4 Mixed Approach: Mixed GA1 and GA2 132 6.5 Precision and Truthfulness of the Proposed DR System 132 6.6 Numerical and Simulation Results 132 6.6.1 Settings 132 6.6.2 Comparison of P1, P2 and GA1 135 6.6.3 Comparison of Different Distributed Approaches 136 6.6.4 The Impact from Energy Storage Unit 141 6.6.5 The Impact from Increasing Renewable Energy 143 6.7 Summary 145 7 Intelligent Charging for Electric Vehicles—Scheduling in Battery Exchanges Stations 147 7.1 Background and Related Work 147 7.1.1 Background and Overview 147 7.1.2 Related Work 149 7.2 System Model 150 7.2.1 Overview of the Studied System 150 7.2.2 Mathematical Formulation 151 7.2.3 Customer Estimation 152 7.3 Load Scheduling Schemes for BESs 154 7.3.1 Constraints for a BES si 154 7.3.2 Minimizing PAR: Problem Formulation and Analysis 156 7.3.3 Problem Formulation and Analysis for Minimizing Costs 156 7.3.4 Game Theoretical Approach 159 7.4 Simulation Analysis and Results 161 7.4.1 Settings for the Simulations 161 7.4.2 Impact of the Proposed DSM on PAR 163 7.4.3 Evaluation of BESs Equipment Settings 164 7.4.3.1 Number of Charging Ports 164 7.4.3.2 Maximum Number of Fully Charged Batteries 164 7.4.3.3 Preparation at the Beginning of Each Day 165 7.4.3.4 Impact on PAR from BESs 166 7.4.4 Evaluations of the Game Theoretical Approach 167 7.5 Summary 169 8 Big Data Analytics and Cloud Computing in the Smart Grid 171 8.1 Background and Motivation 171 8.1.1 Big Data Era 171 8.1.2 The Smart Grid and Big Data 173 8.2 Pricing and Energy Forecasts in Demand Response 174 8.2.1 An Overview of Pricing and Energy Forecasts 174 8.2.2 A Case Study of Energy Forecasts 176 8.3 Attack Detection 179 8.3.1 An Overview of Attack Detection in the Smart Grid 179 8.3.2 Current Problems and Techniques 180 8.4 Cloud Computing in the Smart Grid 182 8.4.1 Basics of Cloud Computing 182 8.4.2 Advantages of Cloud Computing in the Smart Grid 183 8.4.3 A Cloud Computing Architecture for the Smart Grid 184 8.5 Summary 185 9 A Secure Data Learning Scheme for Big Data Applications in the Smart Grid 187 9.1 Background and Related Work 187 9.1.1 Motivation and Background 187 9.1.2 Related Work 189 9.2 Preliminaries 190 9.2.1 Classic Centralized Learning Scheme 190 9.2.2 Supervised Learning Models 191 9.2.2.1 Supervised Regression Learning Model 191 9.2.2.2 Regularization Term 191 9.2.3 Security Model 192 9.3 Secure Data Learning Scheme 193 9.3.1 Data Learning Scheme 193 9.3.2 The Proposed Security Scheme 194 9.3.2.1 Privacy Scheme 194 9.3.2.2 Identity Protection 195 9.3.3 Analysis of the Learning Process 197 9.3.4 Analysis of the Security 197 9.4 Smart Metering Data Set Analysis—A Case Study 198 9.4.1 Smart Grid AMI and Metering Data Set 198 9.4.2 Regression Study 200 9.5 Conclusion and Future Work 203 10 Security Challenges in the Smart Grid Communication Infrastructure 205 10.1 General Security Challenges 205 10.1.1 Technical Requirements 205 10.1.2 Information Security Domains 207 10.1.3 Standards and Interoperability 207 10.2 Logical Security Architecture 207 10.2.1 Key Concepts and Assumptions 207 10.2.2 Logical Interface Categories 209 10.3 Network Security Requirements 210 10.3.1 Utility-Owned Private Networks 210 10.3.2 Public Networks in the Smart Grid 212 10.4 Classification of Attacks 213 10.4.1 Component-Based Attacks 213 10.4.2 Protocol-Based Attacks 214 10.5 Existing Security Solutions 215 10.6 Standardization and Regulation 216 10.6.1 Commissions and Considerations 217 10.6.2 Selected Standards 217 10.7 Summary 219 11 Security Schemes for AMI Private Networks 221 11.1 Preliminaries 221 11.1.1 Security Services 221 11.1.2 Security Mechanisms 222 11.1.3 Notations of the Keys Used in This Chapter 223 11.2 Initial Authentication 223 11.2.1 An Overview of the Proposed Authentication Process 223 11.2.1.1 DAP Authentication Process 224 11.2.1.2 Smart Meter Authentication Process 225 11.2.2 The Authentication Handshake Protocol 226 11.2.3 Security Analysis 229 11.3 Proposed Security Protocol in Uplink Transmissions 230 11.3.1 Single-Traffic Uplink Encryption 231 11.3.2 Multiple-Traffic Uplink Encryption 232 11.3.3 Decryption Process in Uplink Transmissions 233 11.3.4 Security Analysis 235 11.4 Proposed Security Protocol in Downlink Transmissions 235 11.4.1 Broadcast Control Message Encryption 236 11.4.2 One-to-One Control Message Encryption 236 11.4.3 Security Analysis 237 11.5 Domain Secrets Update 238 11.5.1 AS Public/Private Keys Update 238 11.5.2 Active Secret Key Update 238 11.5.3 Preshared Secret Key Update 239 11.6 Summary 239 12 Security Schemes for Smart Grid Communications over Public Networks 241 12.1 Overview of the Proposed Security Schemes 241 12.1.1 Background and Motivation 241 12.1.2 Applications of the Proposed Security Schemes in the Smart Grid 242 12.2 Proposed ID-Based Scheme 244 12.2.1 Preliminaries 244 12.2.2 Identity-Based Signcryption 245 12.2.2.1 Setup 245 12.2.2.2 Keygen 245 12.2.2.3 Signcryption 246 12.2.2.4 Decryption 246 12.2.2.5 Verification 246 12.2.3 Consistency of the Proposed IBSC Scheme 247 12.2.4 Identity-Based Signature 247 12.2.4.1 Signature 248 12.2.4.2 Verification 248 12.2.5 Key Distribution and Symmetrical Cryptography 248 12.3 Single Proxy Signing Rights Delegation 249 12.3.1 Certificate Distribution by the Local Control Center 249 12.3.2 Signing Rights Delegation by the PKG 250 12.3.3 Single Proxy Signature 250 12.4 Group Proxy Signing Rights Delegation 251 12.4.1 Certificate Distribution 251 12.4.2 Partial Signature 251 12.4.3 Group Signature 251 12.5 Security Analysis of the Proposed Schemes 252 12.5.1 Assumptions for Security Analysis 252 12.5.2 Identity-Based Encryption Security 253 12.5.2.1 Security Model 253 12.5.2.2 Security Analysis 253 12.5.3 Identity-Based Signature Security 255 12.5.3.1 Security Models 255 12.5.3.2 Security Analysis 256 12.6 Performance Analysis of the Proposed Schemes 258 12.6.1 Computational Complexity of the Proposed Schemes 258 12.6.2 Choosing Bilinear Paring Functions 259 12.6.3 Numerical Results 260 12.7 Conclusion 261 13 Open Issues and Possible Future Research Directions 263 13.1 Efficient and Secure Cloud Services and Big Data Analytics 263 13.2 Quality-of-Service Framework 263 13.3 Optimal Network Design 264 13.4 Better Involvement of Green Energy 265 13.5 Need for Secure Communication Network Infrastructure 265 13.6 Electrical Vehicles 265 Reference 267 Index 287


Best Sellers


Product Details
  • ISBN-13: 9781119240150
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: Wiley-IEEE Press
  • Edition: Wiley – IEEE
  • Language: English
  • Returnable: N
  • Spine Width: 20 mm
  • Weight: 454 gr
  • ISBN-10: 1119240158
  • Publisher Date: 10 Aug 2018
  • Binding: Hardback
  • Height: 216 mm
  • No of Pages: 304
  • Series Title: IEEE Press
  • Sub Title: Big Data, Cloud Computing, and Security
  • Width: 145 mm


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Smart Grid Communication Infrastructures: Big Data, Cloud Computing, and Security(IEEE Press)
John Wiley & Sons Inc -
Smart Grid Communication Infrastructures: Big Data, Cloud Computing, and Security(IEEE Press)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Smart Grid Communication Infrastructures: Big Data, Cloud Computing, and Security(IEEE Press)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA