Home > Mathematics and Science Textbooks > Physics > Solid-State Physics for Electronics
11%
Solid-State Physics for Electronics

Solid-State Physics for Electronics

          
5
4
3
2
1

International Edition


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

Describing the fundamental physical properties of materials used in electronics, the thorough coverage of this book will facilitate an understanding of the technological processes used in the fabrication of electronic and photonic devices. The book opens with an introduction to the basic applied physics of simple electronic states and energy levels. Silicon and copper, the building blocks for many electronic devices, are used as examples. Next, more advanced theories are developed to better account for the electronic and optical behavior of ordered materials, such as diamond, and disordered materials, such as amorphous silicon. Finally, the principal quasi-particles (phonons, polarons, excitons, plasmons, and polaritons) that are fundamental to explaining phenomena such as component aging (phonons) and optical performance in terms of yield (excitons) or communication speed (polarons) are discussed.

Table of Contents:
Foreword xiii Introduction xv Chapter 1. Introduction: Representations of Electron-Lattice Bonds 1 1.1. Introduction 1 1.2. Quantum mechanics: some basics 2 1.3. Bonds in solids: a free electron as the zero order approximation for a weak bond; and strong bonds 6 1.4. Complementary material: basic evidence for the appearance of bands in solids 10 Chapter 2. The Free Electron and State Density Functions 17 2.1. Overview of the free electron 17 2.2. Study of the stationary regime of small scale (enabling the establishment of nodes at extremities) symmetric wells (1D model) 19 2.3. Study of the stationary regime for asymmetric wells (1D model) with L a favoring the establishment of a stationary regime with nodes at extremities 23 2.4. Solutions that favor propagation: wide potential wells where L 1 mm, i.e. several orders greater than inter-atomic distances 24 2.5. State density function represented in energy space for free electrons in a 1D system 27 2.6. From electrons in a 3D system (potential box) 32 2.7. Problems 40 Chapter 3. The Origin of Band Structures within the Weak Band Approximation 55 3.1. Bloch function 55 3.2. Mathieu’s equation 59 3.3. The band structure 66 3.4. Alternative presentation of the origin of band systems via the perturbation method 70 3.5. Complementary material: the main equation 79 3.6. Problems 81 Chapter 4. Properties of Semi-Free Electrons, Insulators, Semiconductors, Metals and Superlattices 87 4.1. Effective mass (m*) 87 4.2. The concept of holes 93 4.3. Expression for energy states close to the band extremum as a function of the effective mass 96 4.4. Distinguishing insulators, semiconductors, metals and semi-metals 97 4.5. Semi-free electrons in the particular case of super lattices 107 4.6. Problems 116 Chapter 5. Crystalline Structure, Reciprocal Lattices and Brillouin Zones 123 5.1. Periodic lattices 123 5.2. Locating reciprocal planes 125 5.3. Conditions for maximum diffusion by a crystal (Laue conditions) 128 5.4. Reciprocal lattice 133 5.5. Brillouin zones 135 5.6. Particular properties 137 5.7. Example determinations of Brillouin zones and reduced zones 141 5.8. Importance of the reciprocal lattice and electron filling of Brillouin zones by electrons in insulators, semiconductors and metals 146 5.9. The Fermi surface: construction of surfaces and properties 149 5.10. Conclusion. Filling Fermi surfaces and the distinctions between insulators, semiconductors and metals 154 5.11. Problems 156 Chapter 6. Electronic Properties of Copper and Silicon 173 6.1. Introduction 173 6.2. Direct and reciprocal lattices of the fcc structure 173 6.3. Brillouin zone for the fcc structure 178 6.4. Copper and alloy formation 181 6.5. Silicon 185 6.6. Problems 190 Chapter 7. Strong Bonds in One Dimension 199 7.1. Atomic and molecular orbitals 199 7.2. Form of the wave function in strong bonds: Floquet’s theorem 210 7.3. Energy of a 1D system 215 7.4. 1D and distorted AB crystals 224 7.5. State density function and applications: the Peierls metal-insulator transition 228 7.6. Practical example of a periodic atomic chain: concrete calculations of wave functions, energy levels, state density functions and band filling 233 7.7. Conclusion 239 7.8. Problems 241 Chapter 8. Strong Bonds in Three Dimensions: Band Structure of Diamond and Silicon 249 8.1. Extending the permitted band from 1D to 3D for a lattice of atoms associated with single s-orbital nodes (basic cubic system, centered cubic, etc.) 250 8.2. Structure of diamond: covalent bonds and their hybridization 258 8.3. Molecular model of a 3D covalent crystal (atoms in sp3-hybridization states at lattice nodes) 268 8.4. Complementary in-depth study: determination of the silicon band structure using the strong bond method 275 8.5. Problems 287 Chapter 9. Limits to Classical Band Theory: Amorphous Media 301 9.1. Evolution of the band scheme due to structural defects (vacancies, dangling bonds and chain ends) and localized bands 301 9.2. Hubbard bands and electronic repulsions. The Mott metal–insulator transition 303 9.3. Effect of geometric disorder and the Anderson localization 311 9.4. Conclusion 322 9.5. Problems 324 Chapter 10. The Principal Quasi-Particles in Material Physics 335 10.1. Introduction 335 10.2. Lattice vibrations: phonons 336 10.3. Polarons 352 10.4. Excitons 364 10.5. Plasmons 368 10.6. Problems 373 Bibliography 385 Index 387


Best Sellers


Product Details
  • ISBN-13: 9781848210622
  • Publisher: ISTE Ltd and John Wiley & Sons Inc
  • Publisher Imprint: ISTE Ltd and John Wiley & Sons Inc
  • Depth: 25
  • Language: English
  • Returnable: N
  • Spine Width: 28 mm
  • Width: 158 mm
  • ISBN-10: 1848210620
  • Publisher Date: 14 Jul 2009
  • Binding: Hardback
  • Height: 236 mm
  • No of Pages: 432
  • Series Title: English
  • Weight: 771 gr


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Solid-State Physics for Electronics
ISTE Ltd and John Wiley & Sons Inc -
Solid-State Physics for Electronics
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Solid-State Physics for Electronics

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA