Home > Mathematics and Science Textbooks > Chemistry > Organic chemistry > Transition Metal-Dinitrogen Complexes: Preparation and Reactivity
Transition Metal-Dinitrogen Complexes: Preparation and Reactivity

Transition Metal-Dinitrogen Complexes: Preparation and Reactivity

          
5
4
3
2
1

Available


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Add to Wishlist
X

About the Book

A comprehensive book that explores nitrogen fixation by using transition metal-dinitrogen complexes Nitrogen fixation is one of the most prominent fields of research in chemistry. This book puts the focus on the development of catalytic ammonia formation from nitrogen gas under ambient reaction conditions that has been recently repowered by some research groups. With contributions from noted experts in the field, Transition Metal-Dinitrogen Complexes offers an important guide and comprehensive resource to the most recent research and developments on the topic of nitrogen fixation by using transition metal-dinitrogen. The book is filled with the information needed to understand the synthesis of transition metal-dinitrogen complexes and their reactivity. This important book: -Offers a resource for understanding nitrogen fixation chemistry that is essential for explosives, pharmaceuticals, dyes, and all forms of life -Includes the information needed for anyone interested in the field of nitrogen fixation by using transition metal-dinitrogen complexes -Contains state-of-the-art research on synthesis of transition metal-dinitrogen complexes and their reactivity in nitrogen fixation -Incorporates contributions from well-known specialists and experts with an editor who is an innovator in the field of dinitrogen chemistry Written for chemists and scientists with an interest in nitrogen fixation, Transition Metal-Dinitrogen Complexes is a must-have resource to the burgeoning field of nitrogen fixation by using transition metal-dinitrogen complexes.

Table of Contents:
Preface xi About the Editor xiii 1 Overviews of the Preparation and Reactivity of Transition Metal–Dinitrogen Complexes 1 Yoshiaki Tanabe and Yoshiaki Nishibayashi 1.1 Introduction 1 1.2 Biological Nitrogen Fixation 4 1.3 Historical Background of Transition Metal–Dinitrogen Complexes 9 1.4 Coordination Chemistry of Transition Metal–Dinitrogen Complexes 13 1.4.1 Coordination Patterns of Dinitrogen and Mononuclear Transition Metal–Dinitrogen Complexes 13 1.4.2 Multinuclear Transition Metal–Dinitrogen Complexes 16 1.5 Chemical Activation and Reactivity of Dinitrogen Using Transition Metal Complexes 21 1.5.1 Protonation of Transition Metal-bound Dinitrogen 21 1.5.2 Cleavage of Transition Metal-bound Dinitrogen 25 1.5.3 Reaction of Transition Metal-bound Dinitrogen with Dihydrogen 26 1.5.4 Functionalization of Transition Metal-bound Dinitrogen 29 1.5.5 Electrochemical and Photochemical Conversion of Dinitrogen Using Transition Metal Complexes 31 1.6 Catalytic Conversion of Dinitrogen into Ammonia Using Transition Metal Complexes 34 1.6.1 Catalytic Formation of Ammonia or Hydrazine Using Molybdenum Complexes 34 1.6.2 Catalytic Formation of Ammonia or Hydrazine Using Transition Metal Other than Molybdenum (Iron, Ruthenium, Osmium, Cobalt, and Vanadium) Complexes 40 1.6.3 Catalytic Transformation of Hydrazine into Ammonia 45 1.6.4 Catalytic Formation of Silylamine 47 1.7 Conclusion and Perspectives 50 References 51 2 Group 4 Transition Metal–Dinitrogen Complexes 79 Hidetake Seino and Yuji Kajita 2.1 Introduction 79 2.2 Preparation of Group 4 Transition Metal–Dinitrogen Complexes 80 2.2.1 Dinitrogen Complexes of Bis(cyclopentadienyl)titanium Derivatives 80 2.2.2 Dinitrogen Complexes of Bis(cyclopentadienyl)zirconium and Bis(cyclopentadienyl)hafnium Derivatives 89 2.2.3 Other Dinitrogen Complexes Based on Cyclopentadienyl Ligands 98 2.2.4 Dinitrogen Complexes Supported by σ-donor Ligands 100 2.2.5 Heterobimetallic Dinitrogen Complexes 109 2.3 Reactions of Group 4 Transition Metal–Dinitrogen Complexes 112 2.3.1 Protonation 112 2.3.2 Reduction 115 2.3.3 Reactions with Hydrogen 120 2.3.4 Reactions with Si—H and B—H Bonds 129 2.3.5 Reactions with Alkyl Halides and Their Equivalents 131 2.3.6 Reactions with Alkynes 136 2.3.7 Reactions with Carbon Dioxide and Cumulenes 138 2.3.8 Reactions with Carbon Monoxide 142 2.3.9 Dinitrogen Ligand Substitution 148 2.4 Conclusion and Perspectives 151 2.5 Addition After Acceptance of this Manuscript 151 References 152 3 Group 5 Transition Metal-Dinitrogen Complexes 159 Leila M. Duman and Lawrence R. Sita 3.1 Introduction 159 3.2 Preparation of Group 5 Metal N2 Complexes 160 3.2.1 Vanadium 160 3.2.2 Niobium 174 3.2.3 Tantalum 178 3.3 N≡N Bond CleavageWithin Group 5 Metal N2 Complexes 187 3.3.1 Vanadium 188 3.3.2 Niobium 192 3.3.3 Tantalum 197 3.4 Nitrogen Fixation Mediated by Group 5 Transition-metal N2 Complexes 201 3.4.1 Vanadium 202 3.4.2 Niobium 204 3.4.3 Tantalum 206 3.5 CPAM Group 5 Bimetallic (μ-η1:η1-N2) Complexes 206 3.6 Conclusions and Perspectives 212 References 214 4 Group 6 Transition Metal–Dinitrogen Complexes 221 NicolasMézailles 4.1 Introduction 221 4.2 Preparation of Group 6 Transition Metal–Dinitrogen Complexes 222 4.2.1 End-on Dinitrogen Complexes from N2 222 4.2.1.1 Arene and Phosphine Ligands 222 4.2.1.2 Thioether Ligands 226 4.2.1.3 Nitrogen and Cp Ligands 226 4.2.2 End-on Bridging Dinitrogen Complexes from N2: Synthesis and N2 Splitting 228 4.3 Stoichiometric Reactions of Group 6 Transition Metal–Dinitrogen and Metal–Nitrido Complexes 234 4.3.1 N—H Bond Formation 234 4.3.2 N—C Bond Formation 238 4.3.3 N-element Bond Formation 241 4.4 Catalytic Reactions of Group 6 Transition Metal–Dinitrogen Complexes 247 4.4.1 Catalytic Formation of N2H4/NH3 from NonisolatedM–N2 Complexes 247 4.4.2 Catalytic Formation of N(SiMe3)3 247 4.4.3 Catalytic Formation of NH3 251 4.5 Chemistry of Cr Complexes 259 4.6 Conclusion and Perspectives 261 References 263 5 Toward N—NBond Cleavage: Synthesis and Reactivity of Group 7 Dinitrogen Complexes 271 Elon A. Ison 5.1 Synthesis of Group VII N2 Complexes 271 5.1.1 Syntheses of Terminal N2 Complexes 271 5.1.2 Reactivity of Terminal N2 Complexes 275 5.1.2.1 Synthesis of Bridged N2 Complexes by Reaction with Lewis Acids 276 5.1.2.2 Alternative Syntheses of Bridged N2 Complexes 279 5.2 Cleavage and Functionalization of N2 Bonds 280 5.2.1 Generation of Diazomethane from CpMn(CO)2N2 280 5.2.2 Cleavage of N2 in the Coordination Sphere of Rhenium 281 5.3 Conclusions and Future Outlook 281 References 282 6 Group 8 Transition Metal–Dinitrogen Complexes 285 Adam D. Piascik and Andrew E. Ashley 6.1 Introduction 285 6.2 Preparation of Group 8 Transition Metal–Dinitrogen Complexes 288 6.2.1 Ligand Substitution 288 6.2.2 Precursor Reduction 292 6.2.3 Other Methods 296 6.3 Stoichiometric Reactions of Group 8 Transition Metal–Dinitrogen Complexes 297 6.3.1 Substitution Reactions and Lability of Bound N2 297 6.3.2 Cleavage and Functionalization of Coordinated N2 301 6.3.3 Other Stoichiometric Reactivity 309 6.4 Catalytic Reactions of Group 8 Transition Metal–Dinitrogen Complexes 311 6.4.1 Early Results and Fe Bis(diphosphine) Systems for Catalytic N2 Fixation 311 6.4.2 Catalytic NH3 Production by EPR 3-supported Systems 313 6.4.3 Catalytic N2 Fixation by Other Systems 317 6.4.4 Other Catalytic Reactions of Group 8 M–N2 Complexes 319 6.5 Conclusion and Perspectives 327 References 328 7 Group 9 Transition Metal–Dinitrogen Complexes 337 Connie C. Lu and Steven D. Prinslow 7.1 Cobalt–Dinitrogen Complexes 337 7.1.1 Monodentate Phosphine Donors 338 7.1.1.1 CoH(N2)(PR3)3 and Related Co(I) Complexes 338 7.1.1.2 Cobaltate Complexes: [Co(N2)(PR3)3]− 342 7.1.2 Tripodal Polyphosphine Ligands 345 7.1.2.1 Tris(phosphine) Ligands 345 7.1.2.2 Tris(phosphino)borate Ligands 346 7.1.2.3 Trisphosphine Systems with an Apical Main Group Donor 347 7.1.2.4 Trisphosphine Systems with an Apical Transition Metalloligand Donor 350 7.1.3 Ligands with Exclusively Nitrogen Donors 355 7.1.3.1 Tris(pyrazoyl)borate (Tp) Ligands 355 7.1.3.2 β-diketiminate Ligands 356 7.1.3.3 Bis(α-imino)pyridine Ligands 358 7.1.4 N-heterocyclic Carbene Ligands 359 7.1.5 Pincer Ligands 360 7.1.5.1 Monoanionic PNP-Type and PBP-Type Ligands 361 7.1.5.2 Pincer Ligands with N/P Donors 363 7.1.5.3 N-heterocyclic Carbene-Based Pincer Ligands 365 7.1.6 Other Assorted Ligands 367 7.1.7 Analysis and Summary of Cobalt–Dinitrogen Complexes 369 7.2 Rhodium–Dinitrogen Complexes 370 7.2.1 Early Rh–N2 Complexes 370 7.2.2 Phosphine Ligands 372 7.2.3 Ligands with Exclusively Nitrogen Donors 374 7.2.3.1 Bis(α-imino)pyridine Ligands 374 7.2.3.2 β-diketiminate Ligands 375 7.2.4 Pincer Ligands 375 7.2.4.1 PCP Pincer Ligands 376 7.2.4.2 PNP Pincer Ligands 378 7.2.4.3 Other Pincer Ligands 380 7.2.5 N-heterocyclic Carbene Ligands 380 7.2.6 Summary of Rhodium–Dinitrogen Complexes 381 7.3 Iridium–Dinitrogen Complexes 381 7.3.1 Early Ir–N2 Complexes 382 7.3.2 Phosphine Ligands 383 7.3.3 Ligands with Exclusively Nitrogen Donors 385 7.3.3.1 Tris(pyrazoyl)borate (Tp) Ligands 385 7.3.3.2 β-diketiminate Ligands 386 7.3.4 Pincer Ligands 386 7.3.4.1 PNP-Type Pincer Ligands 386 7.3.4.2 PCP- and PSiP-Type Pincer Ligands 388 7.3.5 N-heterocyclic Carbene Ligands 390 7.3.6 Miscellaneous 391 7.3.7 Summary of Iridium–Dinitrogen Complexes 391 7.4 Group 9 Catalysts for N2 Functionalization 392 7.4.1 Cobalt-Based Catalysts 392 7.4.1.1 Dinitrogen Silylation 393 7.4.1.2 Dinitrogen Fixation 395 7.4.2 Outlook for Rhodium and Iridium Catalysts 396 Acknowledgments 396 References 396 8 Group 10 and 11 Transition Metal–Dinitrogen Complexes 403 Ricardo B. Ferreira and Leslie J. Murray 8.1 Introduction 403 8.2 Group 10 Transition Metal–Dinitrogen Complexes 405 8.2.1 Nickel 405 8.2.1.1 Interaction of Dinitrogen with Nickel Surfaces 406 8.2.1.2 Matrix-Assisted Isolation of Binary or Ternary Compounds 406 8.2.1.3 Coordination Compounds 408 8.2.1.4 Structural Relationships and Comparisons 420 8.2.2 Palladium and Platinum 422 8.3 Group 11 Transition Metal–Dinitrogen Complexes 423 8.3.1 Copper 423 8.3.1.1 Matrix-Assisted Isolation of Binary or Ternary Compounds 423 8.3.1.2 Coordination Compounds 425 8.3.1.3 Structural Relationships and Comparisons 427 8.3.2 Silver and Gold 429 8.4 Conclusion and Perspectives 430 References 431 9 Group 3 Transition Metal, Lanthanide, and Actinide–Dinitrogen Complexes 441 Yoshiaki Tanabe 9.1 Introduction 441 9.2 Preparation and Characterization of Group 3 Transition Metal, Lanthanide, and Actinide–Dinitrogen Complexes 443 9.2.1 Overviews of Preparation, Structures, and Characterization of Group 3 Transition Metal, Lanthanide, and Actinide–Dinitrogen Complexes 443 9.2.2 Preparation and Structures of Side-on-Bound {(N2)2−}-Bridged Dinuclear Group 3 Transition Metal, Lanthanide, and Actinide–Dinitrogen Complexes 443 9.2.3 Preparation and Structures of Side-on-bound {(N2)3−}-Bridged Dinuclear Group 3 Transition Metal and Lanthanide Complexes 456 9.2.4 Preparation and Structures of {(N2)4−}-Bridged Dinuclear, Trinuclear, and Tetranuclear Lanthanide and Actinide–Dinitrogen Complexes 457 9.2.5 Preparation and Structures of End-on-Bound Group 3 Transition Metal, Lanthanide, and Actinide–Dinitrogen Complexes 460 9.3 Reactivity and Property of Group 3 Transition Metal, Lanthanide, and Actinide–Dinitrogen Complexes 462 9.3.1 Cleavage, Protonation, and Functionalization of Dinitrogen upon Group 3 Transition Metal, Lanthanide, and Actinide–Dinitrogen Complexes 462 9.3.2 Group 3 Transition Metal–Dinitrogen Complexes as Mediators for the Transformation of Small Molecules 466 9.3.3 {(N2)3−}-Bridged Dinuclear Group 3 Transition Metal and Lanthanide Complexes as Single-Molecule Magnets 468 9.4 Conclusion and Perspectives 469 References 470 Index 475


Best Sellers


Product Details
  • ISBN-13: 9783527344253
  • Publisher: Wiley-VCH Verlag GmbH
  • Publisher Imprint: Blackwell Verlag GmbH
  • Height: 249 mm
  • No of Pages: 496
  • Spine Width: 28 mm
  • Weight: 1089 gr
  • ISBN-10: 352734425X
  • Publisher Date: 13 Mar 2019
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Sub Title: Preparation and Reactivity
  • Width: 173 mm


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Transition Metal-Dinitrogen Complexes: Preparation and Reactivity
Wiley-VCH Verlag GmbH -
Transition Metal-Dinitrogen Complexes: Preparation and Reactivity
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Transition Metal-Dinitrogen Complexes: Preparation and Reactivity

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA